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Representation of the Material Properties of Objects in the
Visual Cortex of Nonhuman Primates
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Information about the material from which objects are made provide rich and useful clues that enable us to categorize and identify those
objects, know their state (e.g., ripeness of fruits), and properly act on them. However, despite its importance, little is known about the
neural processes that underlie material perception in nonhuman primates. Here we conducted an fMRI experiment in awake macaque
monkeys to explore how information about various real-world materials is represented in the visual areas of monkeys, how these neural
representations correlate with perceptual material properties, and how they correspond to those in human visual areas that have been
studied previously. Using a machine-learning technique, the representation in each visual area was read out from multivoxel patterns of
regional activity elicited in response to images of nine real-world material categories (metal, wood, fur, etc.). The congruence of the neural
representations with either a measure of low-level image properties, such as spatial frequency content, or with the visuotactile properties
of materials, such as roughness, hardness, and warmness, were tested. We show that monkey V1 shares a common representation with
human early visual areas reflecting low-level image properties. By contrast, monkey V4 and the posterior inferior temporal cortex
represent the visuotactile properties of material, as in human ventral higher visual areas, although there were some interspecies differ-
ences in the representational structures. We suggest that, in monkeys, V4 and the posterior inferior temporal cortex are important stages

for constructing information about the material properties of objects from their low-level image features.
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Introduction

In our daily life, we visually recognize what objects are made of
based on their surface attributes, which can include color, gloss
and texture. Information about the material composition help us
to categorize and identify objects, know their state (e.g., freshness
of fruits; Arce-Loperaetal., 2012) and decide how to interact with
them (Buckingham et al., 2009). In the past few years, the neural
mechanism underlying material perception has attracted atten-
tion in the field of visual psychophysics (Motoyoshi et al., 2007;
for review, see Anderson, 2011), and more recently in the field of
human neuroimaging. There is now growing evidence that the
medial portion of the human ventral higher visual cortex is re-
sponsible for surface texture, an important attribute indicative of
material (Cant and Goodale, 2007; Cant et al., 2009; Cavina-
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Pratesi et al., 2010a,b; Cant and Xu, 2012); indeed, this region
represents such material properties as roughness and hardness in
a perceptually relevant way (Hiramatsu et al., 2011) and is in-
volved in making judgments about the hardness of materials
(Cant and Goodale, 2011).

Our aim in the present study was to clarify how visual
information about real-world materials is processed in the
visual cortex of nonhuman primates. It has been demon-
strated that neurons in V4 and the inferior temporal (IT)
cortex of monkeys can discriminate natural textures (Arcizet
et al., 2008; Koteles et al., 2008), and that they are sensitive to
surface gloss, an important attribute for material perception
(Nishio et al., 2012; Okazawa et al., 2012). These findings,
together with the well documented color-sensitivity in these
areas, raise the possibility that material perception involves V4
and the IT in monkeys. That said, the discriminability of ma-
terial textures might be ascribable not to a difference in the
material properties, but to the low-level image features, be-
cause material textures differ with respect to their image fea-
tures, such as spatial frequency (Arcizet et al., 2008; Koteles et
al., 2008). To date, no study has examined whether material
properties, per se, are represented in these areas.

To address that issue, we took an approach that involved
assessing the content of the information represented in mul-
tivoxel patterns of fMRI activity (Kriegeskorte et al., 2008),
and examined where in the visual cortex of the monkey the
material representation emerges. Specifically, we extended our
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earlier human fMRI analysis (Hiramatsu et al., 2011) to mon-
keys. This entailed reading out the neural similarity between
materials from the activity patterns elicited by images of real-
world materials, and asking whether the neural similarity is
related to the similarity of visuotactile material properties
(e.g., roughness and hardness), or to low-level image proper-
ties. Our results provide the first evidence that monkey V4 and
the posterior IT (PIT) represent real-world materials in a way
reflecting their visuotactile properties. This is in contrast to
the early visual areas, which well reflect the low-level image
properties. We also present representational similarities and
differences between monkeys and humans, which provide new
insights for linking neural representations across species, as
well as between neural and perceptual representations.

Materials and Methods

Subjects

Two male macaque monkeys were used in this study (M1 and M2;
Macaca fuscata, 67 kg). During training and scanning, each monkey was
seated in the “sphinx” position in a horizontally oriented, custom-made
monkey chair, as originally described by Vanduffel et al. (2001). The
monkey’s head was fixed to the chair using an implanted, MR-
compatible headpost. Each monkey was extensively trained to perform a
fixation task in a mock scanner environment. Detailed descriptions of the
surgery and training are provided previously (Harada et al., 2009; Oka-
zawa et al., 2012). All experimental procedures were in accordance with
NIH guidelines and were approved by the Animal Experiment Commit-
tee of Okazaki National Research Institutes.

Visual stimuli

We used virtual 3D images of nine material categories (metal, ceramic,
glass, stone, bark, wood, leather, fabric, and fur) rendered using NewTek
LightWave 3D. Each category consisted of eight exemplars (Fig. 1), which
had typical, but varied, surface attributes (texture, color, glossiness, and
transparency/translucency) of its material category. The images were
identical to those used in our earlier human study (Hiramatsu et al.,
2011), except that they were resized and converted to 8-bit color images.
Human subjects could accurately classify the images into the nine cate-
gories (mean accuracy across 9 categories = 0.84; chance level = 0.11;
Hiramatsu et al., 2011). The material image (7.5° X 7.5°), in which an
elongated virtual object subtending ~4.5° width and 7.5° height was
placed at the middle, was presented in the center of a uniform gray
background (26° X 20°). The stimulus was displayed using a calibrated
projection display system (Harada et al., 2009; Okazawa et al., 2012).

Experimental design

The stimuli were presented to the monkeys using a block design while
they performed a fixation task. One scanning run consisted of nine cat-
egory blocks interleaved with fixation-only blocks. Each block consisted
of four fixation trials (each for ~2500 ms) interleaved with short inter-
vals (>700 ms). Each fixation trial began with the onset of a small central
spot (~0.2° X 0.2°) on which the monkey had to fixate, and ended with
the offset of the spot. A liquid reward was given at the end of the trial. Two
exemplar images from the same material category were presented during
the fixation period in each trial (each exemplar image for 500 ms, inter-
leaved with a 1000 ms interval), so that all eight exemplar images were
presented during the successive four trials in one category block. The
orders of the exemplars in each category block as well as the orders of
category blocks in each run were randomized. During the scanning, each
trial continued even when a saccade occurred during the fixation period,
and a reward was given at the end of all trials to maintain the motivation
of the monkeys. We analyzed the fixation performance offline, and dis-
carded the data from runs in which the monkey performed poorly (see
below). Because the monkeys were overtrained for fixation, the perfor-
mances during scanning were generally good. The monkey’s eye position
was continuously recorded using an eye-tracking system based around
an infrared CCD camera (60 Hz; Sony), and the task was controlled using
custom-made software (Harada et al., 2009; Okazawa et al., 2012).
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Figure1. Materialimage set. A, Stimulus configuration. Small fixation spot was overlaid on
the stimulus image. B, All material images used in the present study. Each of the nine material
categories consisted of eight exemplars.

Data acquisition

Images were acquired with a Siemens 3T Allegra scanner using a surface
coil (Takashima Seisakusyo). Functional images were collected using a
gradient-echo EPI pulse sequence sensitive to BOLD contrast (TE/TR =
30/2000 ms, flip angle 80 deg, 1.25 mm in-plane resolution, slice thick-
ness 1.6 mm, slice gap 0.32 mm). The images covered almost the entire
occipital, temporal and parietal lobes, and part of the frontal lobe. T2-
weighted anatomical images (inversion recovery turbo spin-echo, 0.75
mm in-plane resolution) were also acquired at the same locations as
those used for the functional images.

A high-resolution anatomical image (MPRAGE; 0.5 mm isovoxel) was
collected from each monkey under anesthesia in a separate scanning
session (Harada et al., 2009; Okazawa et al., 2012) and the cortical surface
was reconstructed from this image using CARET (http://www.nitrc.
org/projects/caret/). The anatomical images and cortical surfaces from
the two monkeys were matched with a common template space, which
was created from the anatomical images of the two monkeys using Dartel
toolbox (Ashburner, 2007) with the 112-RM macaque atlas (McLaren et
al,, 2009).

Data analysis

Each monkey performed >100 runs over 7—8 scanning sessions. The
functional images in a given run were used for analyses only if the mon-
key fixated well (eye position should be inside fixation window (1.5° X
1.5°) for at least 95% of the total fixation period) and did not move too
much (number of the image volumes containing >0.6 mm of translation
should be <5% of the total volumes in the run). The number of analyzed
runs was 94 and 85 for M1 and M2, respectively. The functional images
were then split into two independent datasets, one for the main analysis
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(72 runs for each monkey) and another for the
estimation of visual responsivity to the mate-
rial images (22 and 13 runs for M1 and M2,
respectively). The runs for the second dataset
were evenly selected from all available runs
concatenated across scanning sessions (every 4
runs for M1 and every 8 runs for M2), and the
remaining runs were used as the first dataset
for the main analysis.

Data preprocessing. The functional images
from the two monkeys were preprocessed us-
ing SPM8 (http://www.fil.ion.ucl.ac.uk/spm).
After eliminating the first and last several vol-
umes (in fixation-only block) in each run to
allow for stabilization of the magnetization, the
images were motion-corrected and registered
with anatomical images. They were then spa-
tially normalized to the common space using
Dartel toolbox, and resampled in 1.0 mm iso-
tropic voxels. The images were then spatially
smoothed using a 2 mm full-width at half-
maximum (FWHM) Gaussian kernel, globally
scaled, and temporally high-pass filtered (cut-
off 1/128 Hz).

Estimation of voxel responses to the materials. ol s
To estimate the magnitudes of voxelwise re- W object shape
sponses to each material category, we used
SPMS8 to conduct a GLM analysis of the main
dataset for each monkey. The model consisted
of nine stimulus regressors, one for each of the
nine categories, plus six head-motion regres-
sors of no interest (translation and rotation in 3
dimensions) per run. The stimulus regressor
was modeled by convolving the time series of
the stimulus presentation with the macaque
BOLD HRF measured by Leite et al. (2002).
The spatial pattern of the estimated response
magnitude (3 values) for each of the nine cat-
egories was used for the following multivoxel
pattern analysis (total of 9 patterns per run).

For the second dataset, we estimated the voxelwise response to each
category using the GLM as the main dataset, and estimated the average
response to all categories by contrasting all categories versus the fixation-
only baseline (voxelwise f test). We regarded the obtained t value as visual
responsivity.

Functional localizer and ROI definition. We defined nine regions on
each hemisphere: V1, V2, V3, V3A, V4, and the PIT, central IT (CIT),
middle temporal complex (MT+), and fundus of the superior temporal
area (FST). These regions were defined based on the results of retinotopic
(meridian and center-periphery) mapping and motion localizer, which
were conducted separately from the main material experiment. Detailed
descriptions of these localizer experiments are available previously
(Harada etal., 2009; Okazawa et al., 2012). Briefly, the meridian mapping
run consisted of blocks of horizontal and vertical wedges, and center-
periphery mapping run consisted of blocks of circular checkerboard
patch (eccentricity <3 deg) and peripheral annulus (eccentricity 3-5
deg). The motion localizer run consisted of blocks of moving (expansion
and contraction) random dots and stationary dots. In the retinotopic
mapping and localizer experiments, monkeys performed the fixation
task as in the material experiment and completed at least 14 runs in each
experiment. The data were preprocessed and analyzed using SPM8 with
the GLM as described above.

The borders of V1, V2, V3, V3A, and V4 were determined based on the
meridian representation derived by contrasting horizontal versus vertical
wedges (Fize et al., 2003). The MT+ was determined as a motion-
responsive cluster in the posterior superior temporal sulcus (STS), de-
fined by contrasting moving versus stationary dots (Vanduffel et al.,
2001; Nelissen et al., 2006). The PIT and CIT were defined with reference
to the CARET F99 atlas of the areal partitioning scheme by Felleman and

Figure 2.

sulcus; LuS, lunate sulcus.

< object category

Goda et al. @ Material Representation in Monkey Visual Cortex

mm V3

Bl PIT

I PITshape
Bl PITnonshape

<O face
<> color

Regions of interest. 4, C, Visual responsivity to the material image set (4), and selectivity to object-shape, object-
category, face, and color (€) in the right hemisphere of monkey M1. In A, the visual responsivity (t values) is mapped onto the
inflated cortical surface using a pseudocolor scale ( p < 0.05, corrected for multiple comparisons; voxelwise t test, minimum cluster
size 83 voxels). In C, cyan regions indicate clusters of voxels selective to object shape, and regions outlined in gray, green, and
orange indicate clusters of voxels selective to object-category, face, and color around the PIT, respectively (p << 0.01, uncorrected;
voxelwise ¢ test). Black dotted lines indicate borders of the visual areas identified in that hemisphere. B, D, Distributions of voxels
used for the V1 (green), V2 (cyan), V3 (blue), V4 (purple), and PIT (red) ROIs (B), and those used for the object-shape-selective
(PITshape, green) and object-shape-nonselective (PITnonshape, blue) subdivisions within the PIT (D). The voxels are mapped onto
theright hemisphere of M1asin Aand C. Each color scale denotes the number of overlaps across four hemispheres (voxels in the left
hemispheres are flipped). For clarity, only voxels overlapping across at least two hemispheres are shown. |0S, Inferior occipital

Van Essen (1991), which was registered with individual hemispheres.
The FST was also defined based on the atlas of Felleman and Van Essen
(1991), because the boundary was not evident in our motion localizer
and retinotopy data (Kolster et al., 2009). We used five ROIs for the main
analyses: V1, V2,V3,V4, and the PIT. We did not analyze V3A or the CIT
because these regions contained only small numbers of visually respon-
sive voxels in some hemispheres (Fig. 2A). We also used six additional
ROIs for detailed analyses: central visual field representation of V1, V4,
and the PIT, the MT+/FST (MT+ plus FST, combined because of rela-
tively small size), PITd, and PITv (dorsal and ventral parts of the PIT,
respectively). The central visual field representation of V1, V4, and the
PIT were defined based on the borders of 3° eccentricity derived by
contrasting center versus peripheral stimuli. The PITd and PITv were
separated anatomically at the lip of the STS according to the atlas of
Felleman and Van Essen (1991). Furthermore, we defined functional
clusters selective to face, place, object category, and object shape within
the PIT for detailed analyses based on the GLM analysis of the data
obtained in the separate face/place/object localizer experiment (Tsao et
al., 2003; Denys et al., 2004; Pinsk et al., 2005; Bell et al., 2009; Ku et al.,
2011; Nasr et al., 2011; Rajimehr et al., 2011; Lafer-Sousa and Conway,
2013). The face/place/object localizer run consisted of blocks of achro-
matic images of monkey faces, places (scenes), objects (fruits and man-
made tools), and grid-scrambled objects (Okazawa et al., 2012). The
face-, place (scene)-, object-category-, and object-shape-selective clus-
ters were derived for each hemisphere by contrasting face versus object
and place, place versus face and object, object versus face and place, and
object versus grid-scrambled object, respectively (voxelwise t test; p <
0.01, uncorrected for multiple comparisons). We also defined color-
selective clusters by using data from our previous fMRI experiment that
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measured responses to chromatic and achromatic Mondrian images for
monkeys M1 and M2 (Harada et al., 2009). The color-selective clusters
were derived by contrasting chromatic and achromatic images for each
hemisphere (voxelwise t test; p < 0.01, uncorrected for multiple compar-
isons). Because the analysis in the previous study was performed in the
native subject space, the t values were spatially transformed to the com-
mon template space in the present study using Dartel toolbox. These
functional clusters except the place (scene), which were not evident in the
PIT in some hemispheres, were used for the detailed analyses.

In each of the ROIs, the same numbers of voxels were selected for each
hemisphere based on the visual responsivity determined using the second
dataset as described above. We selected the 500 most visually responsive
voxels (e.g., 500 voxels with highest  values) in each ROI (nearly the
maximal number of voxels with £ > 0 in V3 in some hemispheres) for the
main analysis and the 250 most visually responsive voxels for the detailed
analyses.

Pattern classification analysis. Multivoxel pattern analysis was per-
formed using a Princeton MVPA toolbox (http://www.pni.princeton.
edu/mvpa/) in combination with LIBLINEAR (http://www.csie.ntu.edu.
tw/~¢jlin/liblinear/), which implemented a linear support vector
machine (SVM). We examined how accurately the nine material catego-
ries were classified using linear SVM based on the activity patterns in each
ROL. The activity patterns from 72 runs in the main dataset were z-scored
for each voxel for each run, and splitinto 12 datasets (6 runs in each). The
classifier was trained using the activity patterns from 11 datasets (total,
594 patterns/66 runs) and tested on the remaining one dataset (54 pat-
terns/6 runs) to determine the accuracy of the nine-category classifica-
tion (Crammer—Singer multiclass classification method, chance level =
1/9). This cross-validation procedure was repeated 12 times while chang-
ing the training and test datasets, and the mean accuracy over the 12-fold
cross-validation was computed. This accuracy was obtained separately
for each of four hemispheres, and then the mean accuracy across the four
hemispheres and the ¢ value (mean accuracies across hemispheres minus
chance, divided by the SE) were computed. We used a permutation-
based t test (Nichols and Holmes, 2002) to assess whether the mean
accuracies across hemispheres was significantly above the chance level;
the significance was determined by comparing the actual t value with the
t values under a null hypothesis generated by computing the classifica-
tion accuracy using data with randomly shuffled category labels (2000
times). Results were considered significant at p << 0.05.

The accuracy of the nine-category classification was also obtained us-
ing an activity pattern that was combined for each run and for each
category across the four hemispheres (i.e., 2000 voxels per ROI; Brouwer
and Heeger, 2009; Hiramatsu et al., 2011; Popivanov et al., 2012). In this
case, the accuracy was computed using 12-fold cross-validation as above,
and the significance was assessed by comparing the accuracy with those
under a null hypothesis generated using data with randomly shuftled
category labels (2000 times, a random permutation test).

Representational similarity analysis. We computed the neural dissimi-
larities between all pairs of categories (neural dissimilarity matrix) based
on the activity patterns in each ROI, and compared them with dissimi-
larities in the low-level image properties and visuotactile material prop-
erties between categories. We defined pairwise classification accuracy as
the neural dissimilarity between pairs of categories (Weber et al., 2009;
Said et al., 2010; Hiramatsu et al., 2011). The pairwise classification ac-
curacy was computed using linear SVM with the 12-fold cross-validation
procedure as with the nine-category classification. The accuracy was ob-
tained for each hemisphere and then averaged across the four hemi-
spheres to obtain a group-averaged neural dissimilarity matrix, which
was used for the main analyses. For the complementary analysis, we also
obtained the neural dissimilarity matrix for each monkey by averaging
the matrices from left and right hemispheres for each monkey.

We used dissimilarity matrices of image and material properties that
were defined in our earlier human study (Hiramatsu et al., 2011). The
dissimilarity in the image properties was based on 20 low-level image
statistics of central square regions (3.2° X 3.2°). The image statistics were
8 pixel statistics of CIELAB coordinates (mean and SD of L*, a*, and b*,
and skewness and kurtosis of L*), and 12 sub-band statistics (log mean
magnitudes of 3 spatial frequencies X 4 orientations bands), which were
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Figure 3.  Nine-category classification accuracies in five ROIs. Dark gray bars, Mean accura-
cies averaged across hemispheres. Each ROl contained 500 voxels per ROI per hemisphere. Error
bars indicate the SE across hemispheres. Light gray bars, Accuracies computed using the activity
patterns concatenated across hemispheres (i.e., 2000 voxels per ROI). The chance level (1/9) is
indicated by a horizontal dotted line; *p << 0.05, **p << 0.01, ***p < 0.001 (one-tailed
permutation test).

derived using a steerable pyramid transform (Portilla and Simoncelli,
2000). The dissimilarity in the material properties was based on the re-
sults of a human psychological experiment, in which five human subjects
were asked to rate their visual, tactile or conceptual impressions of each
image using 12 bipolar adjective scales: matte—glossy, opaque—transpar-
ent, simple—complex, regular—irregular, colorful-colorless, smooth—
rough, dry—wet, cold—warm, soft—hard, light—heavy, elastic-inelastic,
and natural-artificial. These dissimilarities in image and material prop-
erties between categories were calculated from Euclidean distances be-
tween centroids of each category (mean across 8 exemplars) in the
multivariate spaces of 20 low-level image features and 12 visuotactile/
conceptual impressions, respectively.

The neural dissimilarity matrix for each ROI was tested to determine
whether it was related to the dissimilarity matrix of the image properties
or material properties by computing partial correlation coefficients while
excluding the correlation between the dissimilarity matrices of the image
and material properties. We opted for Spearman rank correlation as the
measure of the correlation. The choice of the correlation measure did not
affect the interpretation of the results in the present study or in our earlier
human study. The Spearman simple correlation coefficient between dis-
similarity matrices of the image and material properties was 0.289.

Interspecies comparisons. We assessed whether the neural dissimilarity
matrix for each of the monkey ROIs was congruent with those computed
for the human ROIs measured in our earlier study (Hiramatsu et al.,
2011) by computing Spearman simple correlation coefficients. We com-
puted dissimilarity matrices for five human ROIs: V1/V2 (V1 plus V2),
V3/V4 (V3 plus hV4; Wandell et al., 2007), FG/CoS (ventral higher visual
area around fusiform gyrus, FG; and collateral sulcus, CoS), LOS/pITS
(lateral higher visual area around lateral occipital sulcus, LOS; and pos-
terior inferotemporal sulci, pITS), and V3AB/IPS (dorsal higher visual
area that included V3A, V3B and the regions around the intraparietal
sulcus, IPS). FG/CoS and LOS/pITS overlap the object-selective lateral
occipital complex (LOC). Each ROI contained the 500 most visually
responsive voxels for each human subject. The neural dissimilarity ma-
trices for these human ROIs were derived based on the SVM classification
accuracy between a pair of material categories averaged across five hu-
man subjects. In addition, the relationship among the dissimilarity ma-
trices for the monkey and human ROIs, as well as those for the image and
material properties, were visualized in a common low-dimensional space
by using nonmetric multidimensional scaling (MDS; Kruskal’s normal-
ized stress criterion). In the MDS analysis, the distances between pairs of
dissimilarity matrices were defined as one minus the Spearman simple
correlation coefficients between them. Human V3AB/IPS was excluded
from the MDS analysis, since inclusion of this ROI required >3 dimen-
sions to approximate the distances.

Statistical tests of representational similarity. We used a one-tailed ran-
dom permutation test (Mantel test) to assess whether the partial/simple
correlation between the dissimilarity matrices was significantly posi-
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tive. The significance was determined by
comparing the actual value (partial/simple
correlation coefficient) with the distribution
of those under a null hypothesis, which was

generated by computing the values using similar  dissimilar
neural dissimilarities with randomly shuffled |
category labels (10,000 times). Correction 0 100
for multiple comparisons was made using o s g
maximum statistics method, which com- d|SS|m||ar|ty

pares the actual correlation with the distri-
bution of the maximum correlation over
multiple comparisons under the null hy-
pothesis (Nichols and Holmes, 2002). We re-
ported uncorrected p values unless otherwise
stated and results were considered signifi-
cant at p < 0.05.

Similarity searchlight analysis. A spherical
searchlight analysis (Kriegeskorte et al, Vi1
2006) was performed to examine correlation
between neural activities and image or mate-
rial properties throughout the visual cortex
without predefined ROIs. For each voxel in
the visual cortex in each hemisphere, which
covered V1, V2, V3, V3A, V4, MT+/FST,

PIT, and CIT, the neural dissimilarity matrix

was computed using local pattern of activity

within a sphere (4 mm radius) centered at V4
that voxel. The neural dissimilarity was

based on the SVM pairwise classification ac-

curacy, which was obtained using the same
procedure as in the ROI analysis. The partial
correlation (Spearman’s rank correlation)
between the neural dissimilarity and the dis-
similarities of the image or material proper-

ties were then computed for each sphere,
resulting in a map of partial correlations for ~ PIT
each hemisphere. The maps were Fisher-
transformed to z-values, spatially smoothed
(4 mm FWHM) and averaged across the four
hemispheres (left was flipped to right) to
generate a group-averaged map of the partial
correlations and a map of the ¢ values (mean
across hemispheres divided by the SE).

We used the one-tailed permutation-
based t test to assess the statistical signifi-
cance. We obtained 10,000 maps of ¢ values
under a null hypothesis by shuffling category
labels of the neural dissimilarity matrix for
all spheres in the same way. We then com-
puted a p value at each voxel in the group-
averaged map by comparing the actual ¢
value (observed when using the correct la-
bels) with the ¢ values under the null hypoth-
esis. The voxels were initially thresholded at
p < 0.005 and corrected for multiple comparisons at the cluster level
(p < 0.05). The minimum cluster sizes were estimated from null
distribution of suprathreshold cluster sizes generated using the shuf-
fled data (Nichols and Holmes, 2002). This group analysis was con-
strained on the voxels within the intersection of the visual cortices for
the four hemispheres.

Figure 4.

Results

Material information in monkey visual areas

We presented 72 images from nine different real-world material
categories to two fixating monkeys using a block design. The
material categories were metal, ceramic, glass, stone, bark, wood,
leather, fabric, and fur (Fig. 1). The material image set activated
wide regions of the visual cortex encompassing early visual areas

(percentile)
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Dissimilarities in neural activities (V1, V4, and PIT), the low-level image properties, and the perceptual material
properties. Dissimilarity matrices of the image properties and material properties are shownin the top row, and neural dissimilarity
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categories. Error bars indicate the SE across hemispheres. The Spearman simple correlation coefficients are shown in inset. Ba, Bark;
Ce, ceramig; Fa, fabric; Fu, fur; G, glass; Le, leather; Me, metal; St, stone; Wo, wood.

and the PIT, as well as regions in the more anterior part of the IT
(Fig. 2A). We divided these visually responsive regions into 5
ROIs (V1, V2, V3, V4, and PIT) based on separate retinotopic
mapping and localizer data (Fig. 2A,B), and selected the 500
most visually responsive voxels from each ROI in each hemi-
sphere (nearly the maximal number of visually responsive voxels
available in V3).

We first tested for the discriminability between the nine material
categories in these regions by asking how well they could be classified
based on their activity patterns. We used linear SVM to compute the
accuracy of the nine-way classification for each ROI in each hemi-
sphere and then averaged them across the four hemispheres. The
mean classification accuracies obtained were significantly greater
than chance for all ROIs (Fig. 3, dark bars; accuracy = 0.171 and
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material categories based on the pairwise
classification accuracy; pairs of categories
with higher accuracy were regarded as
more dissimilar to each other (Weber et
al., 2009; Said et al., 2010; Hiramatsu et al.,
2011). For dissimilarities in image and
material properties, we used the same
measures used in our earlier human study
assuming a commonality between mate-
rial perception in humans and monkeys.
The issue of interspecies differences will
be considered later. Briefly, the dissimilar-
ity in the perceptual material properties
was determined based on 11 visual/tactile
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Figure5. Representational similarities between the neural activities and the low-level image properties or perceptual material

properties. A, Partial correlation coefficients between the neural dissimilarity matrices for five monkey ROIs and the dissimilarity
matrix of the low-level image properties (dark gray bars) and that of perceptual material properties (light gray bars). Partial
correlation was applied to exclude the correlation between dissimilarity matrices of the image properties and perceptual material
properties. Each ROl contained 500 voxels per ROl per hemisphere. B, Partial correlation coefficients for the central visual field parts
in V1, V4, and the PIT: each contained the 250 most visually responsive voxels per hemisphere; *p << 0.05, **p < 0.01, ***p <

0.001 (one-tailed permutation test).

0.172, p < 0.0005 for V1 and V2; accuracy = 0.145,0.137,and 0.137,
p = 0.004, 0.039 and 0.045, for V3, V4 and PIT, respectively; one-
tailed permutation-based ¢ test). We also computed the accuracy of
the nine-way classification using the activity patterns concatenated
across all hemispheres (Popivanov et al., 2012), because this method
has been shown to improve the classification accuracy (Brouwer
and Heeger, 2009; Hiramatsu et al., 2011). Consistent with earlier
reports, the classification accuracies were improved in all ROIs
(Fig. 3, light bars) and were highly significant (accuracy >0.176,
p < 0.0005 for all ROIs; one-tailed permutation test). These re-
sults indicate that information about materials distribute across a
wide region in the visual cortex, from the lower to higher visual
areas. With both methods of classification, the accuracy tended to
be high in earlier areas. It should be noted that, however, the
classification accuracy levels depend on many, not yet fully un-
derstood, factors such as clustering of neurons with similar pref-
erences. The relatively low accuracy in higher areas could be
because information at the neuronal level is distributed relatively
uniformly over the region, either on fine scale or on coarse scale.

Representational structures in monkey visual areas

We next explored the content of the information represented in
each visual area by assessing the similarity/dissimilarity of the
activity patterns evoked by the material images. Some categories
(e.g., metal and glass) would give us similar visual and tactile
impressions of the material properties (e.g., smooth and hard),
but the low-level image properties of the images in those catego-
ries (e.g., spatial frequency magnitudes) would differ. This raises
the question, does the similarity of the activity patterns in an area
reflect similarity in the perceptual material properties, such as
roughness, hardness, and warmness, or instead similarity in the
low-level image properties? To address that question, we com-
puted the neural dissimilarities between all pairs of material cat-
egories for each ROI and assessed how the neural dissimilarity
was related to the measures of dissimilarity in the perceptual
material properties or in the low-level image properties. We used
linear SVM to evaluate the neural dissimilarity between pairs of

impressions and one conceptual impres-
sion of the material images measured us-
ing 12 bipolar adjective scales, whereas
dissimilarity in the low-level image prop-
erties was determined based on 20 low-
level image statistics (magnitudes of 3
spatial frequencies X 4 orientation sub-
bands + 8 luminance/color pixel statis-
tics) for the material images. The obtained
dissimilarities between all pairs of catego-
ries were displayed as a matrix using a
pseudocolor scale (Fig. 4, top row). This
dissimilarity matrix summarizes the similarity/dissimilarity be-
tween different categories; for example, the two matrices show
that metal and glass have relatively dissimilar low-level image
properties (Fig. 4, top left, light color), but similar perceptual
material properties (Fig. 4, top right, dark color).

We then examined whether the dissimilarity matrix ob-
tained from neural activities (neural dissimilarity matrix, Fig.
4, left column) was related to the low-level image properties or
perceptual material properties (Fig. 4, top row). Figure 4
shows that neural dissimilarity matrix for V1 was remarkably
similar to the matrix of the image properties. By contrast,
neural dissimilarity matrix for V4 and the PIT shared some
common tendencies with the matrix of the material proper-
ties. We quantified whether the neural dissimilarity matrix
was congruent with the dissimilarity matrix of the image prop-
erties or material properties by computing the correlation
(Spearman’s rank correlation) between them (Fig. 4a—f). Be-
cause there was weak correlation between the dissimilarity
matrices of the image and material properties, we evaluated
coefficients of partial correlation as the measure of congru-
ence while excluding the correlation between the image and
material properties. The partial correlation analysis revealed a
marked difference in the representational structure between
the early and higher visual areas (Fig. 5A). The neural dissim-
ilarity matrix for V1 highly correlated with the dissimilarity
matrix of low-level image properties (p = 0.0004; one-tailed
permutation test) but not with that of the perceptual material
properties (p = 0.271). By contrast, the activity in V4 and the
PIT showed the opposite pattern; the dissimilarity matrices for
these ROIs correlated significantly with the dissimilarity ma-
trix of the perceptual material properties (p = 0.017 and
0.012, for V4 and the PIT, respectively) but not with that of the
low-level image properties (p = 0.159 and 0.311, for V4 and
the PIT, respectively). These differences remain significant
after correction for multiple comparisons (image property:
p = 0.0001 for V1; material property: p = 0.046 and 0.042, for
V4 and the PIT, respectively; maximum statistics method).
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Further, the patterns of partial correlation were generally con-
sistent when the data from individual monkeys were analyzed
separately: the neural dissimilarity matrix for V1 highly cor-
related with the dissimilarity matrix of the image properties
(M1: r = 0.690, p = 0.0003; M2: r = 0.748, p = 0.0006),
whereas those for V4 and the PIT tended to correlate with the
dissimilarity matrix of the material properties (M1: r = 0.287
and 0.319, p = 0.068 and 0.041, for V4 and the PIT, respec-
tively; M2: r = 0.395 and 0.285, p = 0.021 and 0.063, for V4
and the PIT, respectively). These results indicate that activity
in V1 represents simple, low-level image properties of the ma-
terial images, whereas those in V4 and the PIT represent ma-
terial properties manifested in visual/tactile and conceptual
impressions. The extrastriate areas V2 and V3 showed patterns
of partial correlation that were similar to V1: strongly signifi-
cant correlations with image properties (p = 0.003 and 0.013
for V2 and V3, respectively) and weaker correlations with the
material properties (Fig. 5A). The correlation with the mate-
rial properties in these areas was, however, significantly posi-
tive in V2 (p = 0.042). This pattern of results suggests that
these extrastriate areas, V2 in particular, were at a midway
point between image-based representation in V1 and percep-
tual material representation in V4 and the PIT.

In the above analysis, the voxels in each area were selected
according to visual responsivity, and there may be difference in
the parts of the visual field represented in each area. We investi-
gated whether this possible retinotopic bias could explain the
observed correlation with the image or material properties by
conducting partial correlation analysis for the voxels represent-
ing central visual field (eccentricity <3°) alone. The analysis re-
vealed that the pattern of results for the central visual field
representation were consistent with that for the entire area (Fig.
5B). The neural dissimilarity matrix for V1 highly correlated with
the dissimilarity matrix of the image properties (p = 0.0029), but
not with that of the material properties, and the neural dissimi-
larity matrices for V4 and the PIT correlated significantly with the
matrix of the material properties (p = 0.019, and 0.024, for V4
and the PIT, respectively), although correlations with the image
properties (p = 0.039 and 0.139, for V4 and the PIT, respectively)
tended to be higher than those for the entire area. These results
indicate that the significant correlation with the material proper-
ties in V4 and the PIT is not because the voxels in these areas
represent different parts of the visual field from earlier areas.

Representations of anatomical/functional subdivisions in and
around the PIT

It is known that there are anatomical or functional subdivi-
sions in and around the PIT. We next investigated whether the
material representation observed in the PIT could be localized
to these anatomical/functional subdivisions. We first tested
whether the representation differed between the dorsal and
ventral parts of the PIT (PITd and PITyv, respectively; Fig. 2A),
which have often been assumed to be separate areas (Felleman
and Van Essen, 1991; Kolster et al., 2009). We selected the 250
most visually responsive voxels (maximally attainable number
for some hemispheres) from each subregion and computed
the neural dissimilarity matrices separately using the activity
patterns in the subregions. We then ran the partial correlation
analysis as described above. We also analyzed the activity pat-
terns in the MT+/FST, which is situated dorsal to the PIT (Fig.
2A). The results showed that the neural dissimilarity matrices
for the PITd and PITv both correlated significantly with the
dissimilarity matrix of the material properties (p = 0.020 and
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Figure 6. Representations within anatomical/functional subdivisions of the PIT. 4, Coeffi-
cients of partial correlation between neural dissimilarity matrices for three anatomically de-
fined ROIs within/near the PIT and the dissimilarity matrix of the low-level image properties
(dark gray bars) and that of perceptual material properties (light gray bars). Partial correlation
was applied to exclude the correlation between dissimilarity matrices of the image properties
and perceptual material properties. B, An area-proportional Venn diagram showing numbers of
voxels (average across 4 hemispheres; 1 mm?>/voxel) selective to object-shape, object-
category, face, and/or color among the visually responsive voxels (voxels with visual responsiv-
ity >0) in the PIT. Total numbers of voxels selective to object shape (black outline), object
category (blue), face (green), and color (red), and that of the other voxels were 376, 130, 140,
149, and 446, respectively. White and gray regions represent voxels selective and nonselective
to object shape, respectively. €, Coefficients of partial correlation between neural dissimilarity
matrices for 5 functionally defined ROIs within the PIT and the dissimilarity matrix of the low-
level image properties (dark gray bars) and that of perceptual material properties (light gray
bars). Shape denotes object-shape-selective voxels in the PIT, nonshape, nonobject, nonface,
and noncolor denote voxels nonselective to object-shape, object-category, face, and colorin the
PIT, respectively. All of the anatomically/functionally defined ROls in A and € contained the 250
most visually responsive voxels per hemisphere; *p << 0.05, **p << 0.01 (one-tailed permuta-
tion test).

0.013, for the PITd and PITv, respectively; Fig. 6A) but not
with that of the image properties (p > 0.284, for both ROIs).
These results indicate that the dorsal and ventral parts of the
PIT similarly represent perceptual material properties. In con-
trast to these PIT subdivisions, the MT+/FST showed signif-
icantly positive correlation with the image properties (p =
0.006) but not with the material properties (Fig. 6A). The
representational structure in this region is therefore quite dif-
ferent from that in the PIT.

We then asked whether the representational structures dif-
fered among functionally defined clusters in the PIT. It has been
reported that images of objects evoke object-related fMRI activity
inalarge portion of the I'T and that images of face and scene evoke
clustered category-selective activations within the IT (Tsao et al.,
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2003; Denys et al., 2004; Pinsk et al., 2005; Bell et al., 2009; Ku et
al., 2011; Nasr et al., 2011; Rajimehr et al., 2011; Lafer-Sousa and
Conway, 2013). Consistent with those earlier reports, our func-
tional localizer experiment using images of faces, scenes, objects
and grid-scrambled objects revealed the PIT to contain large
number of voxels responsive to objects (Fig. 2C, cyan). Because
we defined this object-related activity by contrasting the activities
evoked by objects versus grid-scrambled objects, it should mainly
reflect selectivity for object shape. Based on this localizer data, we
classified voxels in the PIT as voxels selective or nonselective to
object shape (object-shape-selective or nonselective; Fig. 6B,
white and gray regions), and then selected the 250 most visually
responsive voxels from each of those groups. The selected object-
shape-selective and nonselective voxels distributed in both the
PITd and PITv although there was a bias toward larger number of
the object-shape-selective voxels in the PITd (Fig. 2D). The par-
tial correlation analysis indicated that the dissimilarity matrix
derived from the object-shape-nonselective voxels within the PIT
showed a strongly significant correlation with the material prop-
erties (p = 0.003; Fig. 6C) but not with the image properties (p =
0.089), whereas the matrix derived from the object-shape-
selective voxels within the PIT showed nonsignificant correlation
with the material properties (p = 0.178). These results suggest
that object-shape-nonselective voxels play the main role in rep-
resenting material properties within the PIT.

The localizer data also showed clusters of face-selective voxels
present around the lip of the STS (Fig. 2C, green), and clusters of
voxels more responsive to objects than to other categories (Fig.
2C, gray). Based on these data and the color-selectivity data ob-
tained in our previous study (Fig. 2C, orange; Harada et al,,
2009), we then investigated whether these feature/category selec-
tive voxels within the PIT are involved in the material represen-
tation. The numbers of these voxels were, however, much smaller
than that of the object-shape-selective voxels (Fig. 6B), and the
numbers in some hemispheres might not be sufficiently large for
decoding information in monkey IT (Ku et al., 2008). For that
reason, we assessed the contribution of a given set of voxels by
eliminating those voxels and examining its effect (feature pertur-
bation technique; Etzel et al., 2013): if a particular set of voxels
were important for material representation, neural dissimilarity
computed without such voxels would show degraded correlation
with the material properties.

We defined the object-category-nonselective, face-nonselective,
and color-nonselective voxels within the PIT as for the object-
shape-nonselective voxels. Each of the object-category-nonselective,
face-nonselective, and color-nonselective voxels contained
the 250 most visually responsive voxels, which were included
in the 500 most visually responsive voxels in the PIT. The
partial correlation analysis showed that the object-category-
nonselective, face-nonselective, and color-nonselective voxels
in the PIT showed marginal or nonsignificant correlation with
the material properties (p = 0.063, 0.042, and 0.10, for the
object-category-nonselective, face-nonselective, and color-
nonselective voxels, respectively; Fig. 6C). In other words, ex-
cluding the voxels selective to either object category, face, or
color from the PIT degrades the correlation with the material
properties. This pattern suggests the voxels selective to either
object category, face, or color make some contribution to per-
ceptual material representation within the PIT.

Dependencies on dissimilarity measures
The low-level image properties that we used consisted of sub-
band magnitudes and color/luminance statistics. To assess what
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Figure7. Effects ofimage features on the representational similarities and dependencies on
the neural dissimilarity measures. A, Coefficients of partial correlation between the neural
dissimilarity matrices for the five ROls and the dissimilarity matrix of the low-level image prop-
erties (left column) and that of perceptual material properties (right column), obtained using
different types of image properties. The coefficients are shown using color scale. Partial corre-
lation was applied to exclude the correlation between dissimilarity matrices of the image prop-
erties and perceptual material properties. The results obtained by using all 20 low-level image
features (top row, same as those in Fig. 54) as well as those obtained by using the image
properties computed from sub-band magnitude (12 features, second row), luminance statistics
(4 features, third row), and color statistics (4 features, fourth row) are shown. B, Coefficients of
partial correlation obtained using the neural dissimilarities defined by Euclidean distance and
correlation-based distance between multivoxel response patterns for each category. Original
image properties (20 features) and material properties were used. €, Scatter plots showing the
relationship between neural dissimilarities (mean Euclidean distance across 4 hemispheres) in
V4 and the PIT against dissimilarities in the material properties for all pairs of categories. Inset,
The Spearman simple correlation coefficients. D, Mean response amplitudes for each category
in'V1, V4, and the PIT. Vertical axis represents the mean response amplitude (/3 values) aver-
aged across all voxels in each ROI. Error bars in Cand D indicate the SE across hemispheres. Ba,
Bark; Ce, ceramic; Fa, fabric; Fu, fur; G, glass; Le, leather; Me, metal; St, stone; Wo, wood.

image features well reflect the neural dissimilarities, we con-
ducted additional analyses for V1, V2, V3, V4, and PIT using the
dissimilarity matrix of the image properties computed separately
from 12 sub-band magnitudes (3 spatial frequencies X 4 orien-
tation), luminance statistics (mean, SD, skewness, and kurtosis),
or color statistics (mean and SD of a* and b*). For each ROI, we
evaluated coefficients of partial correlation between the neural
activities and each of these three types of image properties after
excluding the correlation between the image and material prop-
erties as in the main analysis (Fig. 5A). The results revealed that
the image properties computed from sub-band magnitudes well
explained neural activities for early areas in a degree similar to the
original image properties computed using all low-level image
features, whereas the image properties computed from lumi-
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nance statistics and from color statistics A
did not (Fig. 7A, left column). Thus, the
differences in sub-band magnitudes made
dominant contribution to the neural dis-
similarities. Although the color-selective
voxels would be involved in material rep-
resentation to some degree (Fig. 6C),
those voxels would represent more com-
plex color features than those used in this
analysis. We also evaluated coefficients of
partial correlation between the neural ac-
tivities and the material properties after
excluding the correlation between the im-
age and material properties for each type
of image properties, because these esti-
mates might change depending on the im-
age properties. Figure 7A, right column,
indicates partial correlation between the
neural activities and the material proper-
ties computed after excluding the effect of
the sub-band magnitudes (“sub-band” row), luminance statistics
(“luminance” row), or color statistics (“color” row), respectively.
The results showed that high partial correlation with the material
properties in V4 and the PIT was reliably observed in all cases
(V4:7=0.424, p = 0.016; PIT: r = 0.424, p = 0.013; Fig. 7A, right
column), confirming material representation in these regions. In
addition, lack of the change in the partial correlation indicates
that the high correlation between the neural activities and the
material properties cannot be explained by the contribution of
simple image features, such as sub-band magnitudes, luminance
statistics, or color statistics.

In the analyses described so far we used the classification ac-
curacy as a metric of the neural dissimilarity between material
categories. We next examined how the results of the partial cor-
relation analysis depend on the neural dissimilarity metric. We
tested for additional two metrics of neural dissimilarity: Euclid-
ean distance and correlation-based distance (1-Spearman simple
correlation coefficient) between the multivoxel response patterns
(Kriegeskorte et al., 2008; Hiramatsu et al., 2011). The neural
dissimilarity matrices were computed using these metrics from
the average response patterns to each of the material categories (3
values averaged across all runs). The matrix was obtained for each
ROTI in each hemisphere, and then averaged across hemispheres.
With both metrics, the neural dissimilarity matrices for V1 and
V2 showed high correlation with the image properties (V1: r =
0.698, p = 0.006; V2: r = 0.460, p = 0.014; Fig. 7B, left, dark blue
colors) and the matrix for the PIT showed significant correlation
with the material properties (r = 0.403, p =< 0.020; Fig. 7B, right,
dark red colors, C, right), as observed with the classification-
based neural dissimilarity (Fig. 7A, top row). Therefore, the pat-
tern of partial correlation in these areas did not depend on the
metrics of the neural dissimilarity. V3 and V4 tended to show
variability depending on the metrics: in these areas, Euclidean
distance between the responses patterns showed correlation with
the material properties (V3: r = 0.43, p = 0.015; V4: r = 0.401,
p = 0.026; Fig. 7B, right, C, left), but correlation-based distance
did not. One important difference between these metrics is the
contribution of the mean response amplitudes. Euclidean dis-
tance, as well as the classification accuracy, between the response
patterns reflects differences in the mean response amplitudes be-
tween material categories, but correlation-based distance ignores
them. The results thus suggest that the contribution of the re-
gional mean responses to the representation is different between

Figure 8.
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centers showing significant partial correlation with the image properties (blue bar) or material properties (red bar) in the group-
averaged map (A). The numbers were calculated in each area in each of the individual hemispheres and then averaged across
hemispheres. Error bars indicate the SE across hemispheres. 10S, Inferior occipital sulcus; LuS, lunate sulcus.

V3/V4 and higher area, as observed in humans (Hiramatsu et al.,
2011).

In relation to the observation above, we performed a univar-
iate analysis to investigate the regional mean responses (Fig. 7D).
The mean response amplitudes (3 weights) varied depending on
the material categories in V1, V4, and PIT (F(4 ,,) = 19.3 and 16.5,
p <10 %, for V1 and V4, respectively; F(g ,4) = 4.57, p = 0.002,
for the PIT; repeated-measures ANOVA for each ROI). V1 re-
sponded strongly to metal, probably based on the low-level image
features. The modulation of the response amplitudes for different
categories in V4 was larger than that in the PIT. This may be
related to the dependency on the neural dissimilarity metrics as
described above. On the other hand, the average of the mean
response amplitudes across all categories did not differ signifi-
cantly among these ROIs (F,4 = 4.87, p = 0.055; repeated-
measures ANOVA). Thus, the representational difference
between ROIs is not ascribed to the difference in the average level
of the activation.

Similarity searchlight

To complement the analyses with our predefined ROIs, we con-
ducted a spherical searchlight analysis to map the representa-
tional similarity with the low-level image properties and
perceptual material properties throughout the visual cortex (see
Materials and Methods, Similarity searchlight analysis). Figure
8A shows the group-averaged map showing the centers of spheres
where partial correlation with the image or material properties
was significantly positive (p < 0.05 corrected for multiple com-
parisons; one-tailed permutation-based ¢ test). Partial correla-
tion with the image properties (blue regions) was significantly
positive in posterior visual cortex around V1 and V2. The signif-
icant partial correlation with the material properties (red re-
gions) was found in more anterior regions: parts of lunate and
inferior occipital sulci overlapping with V4, and in the IT gyrus
within the PIT, as well as in posterior regions around V2 and V3.
We examined the location of the center of spheres that showed
significant partial correlation with the image or material proper-
ties in the group-averaged map (Fig. 8A), by counting the num-
ber of them in each visual area. The numbers were calculated in
each of the individual hemispheres and then averaged across
hemispheres. The results indicated that the number of spheres
showing correlation with the image properties in V1 and V2 was
much larger than that of those showing correlation with the ma-
terial properties (Fig. 8B). On the other hand, in V3, V4, and PIT,
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the number of spheres showing correlation with the material
properties was much larger than that of those showing correla-
tion with the image properties. It should be noted that spatial
resolution in the searchlight analysis is limited (Etzel et al., 2013),
because each sphere can contain voxels from multiple visual ar-
eas, when it is located around the area border or inside of a sulcus
where different areas face each other. The high correlation with
the material properties (but not with the image properties) in V3
would be possibly due to this limitation. Overall, the searchlight
results are consistent with the results of the ROI analysis, provid-
ing further evidence for material representations in V4 and the
PIT.

Representation of a specific material category

So far, we have opted to measure the dissimilarity in perceptual
material properties based on ratings by human subjects and
found that some areas in monkeys showed significant correlation
with this measure. This would not be expected if material percep-
tion were substantially different across species. Thus, humans
and monkeys likely share some degree of material perception in
common. Nevertheless, it is also likely that monkeys and humans
recognize some categories somewhat differently. If so, that differ-
ence may affect the estimates of the correlation between the ac-
tivity pattern and the perceptual material properties, and the
correlation between these measures may vary across material cat-
egories. Based on this idea, we investigated how the results of the
partial correlation analysis shown in Figure 5A varied when one
of the nine categories was excluded from the data.

The results revealed that the patterns of partial correlation
were generally stable, even when one category was excluded from
the dissimilarity matrices; partial correlations with image prop-
erties were high in early areas, V1 in particular (Fig. 9, left, dark
blue colors), whereas partial correlation with material properties
was generally high in V4 and the PIT (Fig. 9, middle, dark red
colors). This is consistent with the general commonality of ma-
terial perception in humans and monkeys. On the other hand,
some categories do appear to influence the patterns of correlation
(Fig. 9, right). For example, the neural dissimilarity matrix com-
puted by excluding the ceramic category tended to show high
correlation with the material properties in V4 and the PIT (p =
0.019 and 0.006, for V4 and the PIT, respectively; one-tailed per-
mutation test). This implies that monkeys and humans recognize
this material differently. Conversely, the neural dissimilarity ma-
trix computed by excluding the metal category tended to show
lowered correlation with the material properties (p = 0.151 and
0.060, for V4 and PIT, respectively). Thus, the neural and percep-
tual data for this material would make a relatively important
contribution to the neural-perceptual correlation in the original
analysis, probably because monkeys and humans recognize metal
similarly.

Interspecies comparisons of the representational structures

In the present study and in our earlier human study, we used a
common image set, essentially the same task, and the same mea-
surement and analysis techniques. This enabled us to directly
compare the neural representations across species, and to inves-
tigate how the neural representations in different visual areas in
monkeys were related to those in humans. We first examined the
representational similarity across species by computing interspe-
cies correlation of dissimilarity matrices between five monkey
ROIs and 5 human ROIs. The human ROIs were V1/V2, V3/V4,
FG/CoS (ventral higher visual area around FG and CoS), LOS/
pITS (lateral high visual area around LOS and pITS), and V3AB/
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Figure 9.  Contribution made by each material category to the representational similarities

between the neural activity and the low-level image properties or perceptual material proper-
ties. Coefficients of partial correlation between neural dissimilarity matrices for the five ROls and
the dissimilarity matrix of the low-level image properties (left) and that of perceptual material
properties (middle) are shown using color scale. The data in the top row were evaluated using
all nine material categories (the same as Fig. 54 and Fig. 7A, top row), whereas the data in the
remaining rows were evaluated using eight categories; one category was excluded from the
dissimilarity data. The excluded categories are shown on the vertical axis. Right, Partial corre-
lation coefficients with the material properties are replotted for V4 and the PIT with the signif-
icance level. Orange: p << 0.05, red: p << 0.01 (one-tailed permutation test).

IPS (dorsal higher visual area including V3A, V3B and the regions
in IPS); neighboring early visual areas (e.g., V1 and V2) were
combined to equate the numbers of voxels across ROIs. As in the
present study, the voxels were selected for each ROI based on the
visual responsivity to the material image set, and the neural dis-
similarity matrix for each ROI was obtained based on the classi-
fication accuracy between material categories. Among these, FG/
CoS was shown to reflect human perception well (Hiramatsu et
al.,, 2011).

It is widely assumed that monkey early visual areas, V1 in
particular, are functionally similar to the corresponding human
areas, and that the monkey IT is a homolog of a part of human
lateral and ventral higher visual areas (Kriegeskorte et al., 2008).
The pattern of the interspecies correlations obtained was gener-
ally consistent with those ideas (Fig. 10A): monkey V1 and V2
showed strong correlation with human V1/V2, and the monkey
PIT tended to correlate with the human ventral higher area FG/
CoS, although monkey V3 and V4 did not show clear correlation
with human V3/V4. We tested the significance of the correlation
between monkey V1 and human V1/V2, both of which have been
shown to reflect low-level image properties well, and confirmed
that the representations in these areas were significantly corre-
lated (r = 0.64, p = 0.002; one-tailed permutation test). We also
tested whether the representations in monkey V4 and the PIT
correlated significantly with that in the human FG/CoS, as all of
these areas have been shown to be involved in perceptual material
representation. The results showed that the correlations were sig-
nificant only between the monkey PIT and human FG/CoS (V4,
r = 0.30, p = 0.063; PIT, r = 0.45, p = 0.005). Thus, the repre-
sentation in the human FG/CoS would be more similar to the
monkey PIT than V4.

We next applied nonmetric MDS to visualize the relationship
between the representational structures in the visual areas of
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species correlation between five monkey and five human ROIs. The color scale indicates Spear-
man simple correlation coefficient. B, Two-dimensional space showing the representational
similarity among the five monkey ROIs and four human ROIs, as well as the image and material
properties, constructed using nonmetric MDS. Inset, The stress values plotted as a function of
the number of dimensions indicating that the distances in the 2-dimensional space explain the
distances (1-Spearman simple correlation coefficient) across the representations well. hV1/V2,
Human V1 and V2; hV3/V4, human V3 and hV4; hFG/CoS, human ventral higher visual areas
around FGand CoS; hLOS/pITS, human lateral higher visual areaaround LOS and pITS; V3AB/IPS,
human dorsal higher visual area around V3A, V3B, and IPS.

monkeys and humans in a common low-dimensional space (Fig.
10B). Within this space, strongly correlated pairs (i.e., similar in
representation) lie in close proximity and weakly correlated pairs
are widely separated. This analysis took into account not only the
interspecies correlations shown in Figure 104, but also intraspe-
cies correlations (e.g., between monkey V1 and V2). The neural
dissimilarity matrices for five monkey ROIs and four human
ROIs, as well as the dissimilarity matrices of the image and ma-
terial properties, were used in this analysis, which enabled us to
visualize the distances between the dissimilarity matrices in a
2-dimensional space (stress < 0.1; Fig. 10B, inset). Consistent
with the results summarized above, within the MDS-derived
space, the monkey V1, human V1/V2 and image properties are
situated close to one another, whereas the monkey PIT and hu-
man FG/CoS are both close to the perceptual material properties.
The overall configurations in this space well reflect the hierarchy
from early to higher visual areas in both species, although the
monkey areas and human areas followed separate paths. This
suggests that, although there are some representational differ-
ences between the species, the image-based representation in the
early area was transformed to perceptual material representation
along the ventral path in both species.
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Discussion

Our findings demonstrate that the activity patterns in the early
and higher visual areas of monkeys carry information about ma-
terials. Importantly, the early and higher visual areas differ in the
way they represent material information. Whereas activity pat-
terns in the early visual areas, particularly V1, well reflect low-
level image properties, those in V4 and the PIT reflect perceptual
material properties. This suggests that, in monkeys, V4 and the
PIT are important stages for constructing information about the
material properties of objects from low-level image features. In a
separate analysis, we also found concordant representations be-
tween species; neural representations in early areas (monkey V1
and human V1/V2) and higher areas (monkey PIT and human
FG/CoS) share similar representational structures across species.
Further analysis suggested that, within the PIT, voxels selective to
object-category, face, and color contributed to some degree to
material representation. Interestingly, information about mate-
rial properties is carried by the activities of functional clusters
with little selectivity for object shape, rather than by those selec-
tive for object shape. This is in line with the observation in human
imaging studies that information about material/texture and
shape are represented in separate regions within the human ven-
tral higher areas; whereas material/texture involves medial/ven-
tral parts, shape involves lateral/dorsal parts (Peuskens et al.,
2004; Cant and Goodale, 2007; Cant et al., 2009; Cavina-Pratesi et
al., 2010a,b; Cant and Goodale, 2011; Cant and Xu, 2012). Our
results suggest the monkey PIT is functionally organized for sep-
arate processing of object surface and shape, as in humans, al-
though the anatomical segregation (e.g., medial/ventral vs
lateral/dorsal) between surface and shape may be less distinct
than in humans.

Our approach in this study was to investigate the content of
information represented in cortical areas by analyzing the simi-
larity of multivoxel patterns of activity (for review, see Krieges-
korte and Kievit, 2013). The analysis assumes that information in
aregion can be read out from the activity pattern, because infor-
mation at the neuronal level is not uniformly distributed over the
region. Previous studies have suggested that multivoxel patterns
of fMRI activity in the monkey IT carry information about object
category (Tsao et al., 2003; Ku et al., 2008; Popivanov et al., 2012;
Liu et al., 2013), shape (Op de Beeck et al., 2008), and facial
expressions (Furl et al., 2012). Our present findings provide new
evidence that information about materials also resides in the ac-
tivity pattern in part of the monkey IT and in earlier areas. Im-
portantly, ours is the first evidence that fMRI activity patterns in
the monkey higher areas reflect perceptual material categories.
Further, we observed interspecies commonality and differences
in the neural and perceptual representations, adding new insight
to previous attempts to link object representations at the levels of
single neuron activity in monkeys, fMRI activity in monkeys and
humans, and human perception (Kiani et al., 2007; Kriegeskorte
et al., 2008; Liu et al., 2013; Mur et al., 2013).

Processing of surface attributes in monkey V4 and the IT

Neurons in monkey V4 and IT exhibit selectivity for artificial
textures (Komatsu and Ideura, 1993; Kobatake and Tanaka,
1994; Hanazawa and Komatsu, 2001) and for real-world nat-
ural textures, such as leaf (Arcizet et al., 2008; Koteles et al.,
2008). The neurons in these areas can also distinguish natural
textures independently of their shape and direction of illumi-
nation, though the population responses of neurons in these
areas could be explained to some extent by low-level image



Goda et al. @ Material Representation in Monkey Visual Cortex

features (Arcizet et al., 2008; Koteles et al., 2008). We tested
whether these areas do indeed represent information about
materials, and provide clear evidence that the activity patterns
in V4 and the PIT cannot be ascribed merely to low-level
image features; instead, they reflect the material properties.
We suggest the low-level features are transformed, probably
through V2 (Freeman et al., 2013), to information about ma-
terial properties at the level of V4 and the PIT.

Material perception requires both texture information and
surface reflectance information, such as color and gloss. V4
and the PIT defined in the present study encompass the gloss-
selective regions identified in our recent fMRI experiment
(Okazawa et al., 2012). These regions also exhibit color-
selective fMRI activity (Conway and Tsao, 2006; Conway et al.,
2007; Wade et al., 2008; Harada et al., 2009; Lafer-Sousa and
Conway, 2013), suggesting information about gloss and color
resides in both V4 and the PIT. The information about surface
properties as well as texture in these regions would be related
to activities reflecting the material properties. Consistent with
this idea, we suggested that color-selective voxels in the PIT
contribute to material representation to some degree (Fig.
6C). In some hemispheres, gloss- and color-selective fMRI
activities have also been observed in the CIT, a region anterior
to the PIT (Harada et al., 2009; Okazawa et al., 2012; Lafer-
Sousa and Conway, 2013). Moreover, neurons in the CIT have
been found to selectively respond to particular types of gloss
(Nishio et al., 2012). Thus, the CIT could potentially carry
information about gloss and color. In the present study, we did
not analyze material representation in the CIT because of the
weak response to material images in this region (Fig. 2A).
However, because the weakness of the response in the CIT is
due in part to susceptibility artifacts (Harada et al., 2009),
further research will be necessary to conclusively determine
whether the CIT represents material properties. In that study,
techniques with high sensitivity (e.g., use of contrast agent and
high magnetic field) would be helpful.

Representations of materials, objects, and scenes in the IT

It has been suggested that, in humans, various object catego-
ries are represented semantically and hierarchically in the
higher visual areas, where animate/living versus inanimate/
nonliving object classes is one important semantic dimension
(Kriegeskorte et al., 2008; Haxby et al., 2011; Connolly et al.,
2012). So one may argue that the representation we observed
in the IT might reflect not material but object classes with
which the materials are associated (e.g., leather and fur might
be associated with the animate/living object class, metal and
stone with the inanimate/nonliving class). We suggest this is
not the case, however. First, it remains controversial whether
the animate-inanimate dimension is important for object rep-
resentation in the monkey IT (Popivanovetal., 2012; Liu et al.,
2013). Second, such representational structure has so far been
suggested only for objects with a typical shape. We used virtual
objects with nonsense shapes and found that information
about the materials was represented in a region that was not
selective for object shape, as argued earlier. Thus, the repre-
sentation observed in this study was based on information
about the surface, not about the shape.

It is worth considering the relationship between represen-
tation of materials and scenes, since some human studies have
reported that a material/texture-selective region overlaps a
scene-selective region (parahippocampal place area) in the
medial portion of the ventral visual cortex (Cant and Goodale,
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2011; Cant and Xu, 2012). Recent monkey fMRI studies re-
ported scene-selective activity on the lateral/ventral surface of
the IT gyrus, and around dorsal V4 and V3A (Nasr et al., 2011;
Rajimehr et al., 2011). These regions also responded to high
spatial frequency components, such as surface bumps (Ra-
jimehr et al., 2011). The monkey PIT examined in the present
study could possibly overlap part of the scene-selective region,
although this remains unclear because scene-selective clusters
were not evident in our localizer data. It would be of interest to
know whether material information is represented in these
scene-selective regions.

Commonality and differences in neural representation

across species

Our analysis revealed representational similarity across species in
the early visual area and in higher areas, but also showed a general
tendency toward representational differences across species (Fig.
10). In particular, there was little correlation between represen-
tation in monkey V4 and that in human V3/V4 (Fig. 10A). It was
recently suggested that the activities in monkey V4 do not func-
tionally correlate with those in human V4 (hV4), but do correlate
with those in higher areas, such as the LOC (Mantini et al.,
2012a,2012b). Our results are in line with that finding, which
suggests the correspondence between the visual areas of humans
and monkeys become complex at this midlevel in the hierarchy.
This idea is also supported by our MDS analysis of the relation-
ship between representational structures in monkeys and hu-
mans (Fig. 10B).

We also suggest that there are some interspecies differences
in material perception (Fig. 9). For example, the representa-
tion for metal might be similar in the two species, but repre-
sentation for ceramic might differ. This is interesting, given
that the prior experiences of the monkey subjects with these
materials differ substantially: they have been visually and hap-
tically exposed to metallic things in the animal facilities for
several years, but they probably had little or no exposure to
ceramic. It will be important in the future to clarify how the
monkeys categorize these material images, and whether ob-
served interspecies differences are attributable to differences
in the subjects’ visuohaptic experience, or to other factors,
such as behavioral and/or evolutionary significance.
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