ORIGINAL ARTICLE

Cerebral Cortex, October 2017;27: 4867-4880

doi: 10.1093/cercor/bhw282
Advance Access Publication Date: 20 September 2016
Original Article

Gradual Development of Visual Texture-Selective
Properties Between Macaque Areas V2 and V4

Gouki Okazawal2:3>, Satohiro Tajima#, and Hidehiko Komatsu?!:?

'Division of Sensory and Cognitive Information, National Institute for Physiological Sciences, Aichi 444-8585,
Japan, Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI),
Aichi 444-8585, Japan, *Center for Neural Science, New York University, New York, NY 10003, USA,
“Department of Basic Neuroscience, University of Geneva, Geneva 1211, Switzerland, and *Current address:
Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.

Address correspondence to Gouki Okazawa. Email: okazawa@nyu.edu

Abstract

Complex shape and texture representations are known to be constructed from V1 along the ventral visual pathway

through areas V2 and V4, but the underlying mechanism remains elusive. Recent study suggests that, for processing of
textures, a collection of higher-order image statistics computed by combining V1-like filter responses serves as possible
representations of textures both in V2 and V4. Here, to gain a clue for how these image statistics are processed in the
extrastriate visual areas, we compared neuronal responses to textures in V2 and V4 of macaque monkeys. For individual
neurons, we adaptively explored their preferred textures from among thousands of naturalistic textures and fitted the
obtained responses using a combination of V1-like filter responses and higher-order statistics. We found that, while the
selectivity for image statistics was largely comparable between V2 and V4, V4 showed slightly stronger sensitivity to the

higher-order statistics than V2. Consistent with that finding, V4 responses were reduced to a greater extent than V2
responses when the monkeys were shown spectrally matched noise images that lacked higher-order statistics. We
therefore suggest that there is a gradual development in representation of higher-order features along the ventral visual

hierarchy.
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Introduction

Visual processing of texture is pivotal for perception of the
materials and surface properties of objects. We effortlessly rec-
ognize the material (e.g. wood, metal) or the condition of an
object (e.g. rusted tools, rotten food), which are associated with
specific textures on the object’s surfaces (Adelson 2001).
Indeed, many recent psychophysical studies have suggested
that humans make use of various textural statistics of images
to perceive materials or surface properties (for review, see
Fleming 2014). Since complex visual scenes become visually
indistinguishable when their textural statistics are equated
(Freeman and Simoncelli 2011), understanding the neural pro-
cessing of texture should provide valuable information on the

mechanisms of visual perception. Previous studies revealed
that the ventral pathway gradually integrates information from
V1-level representation into material or surface property
representation in higher-visual areas (Hiramatsu et al. 2011,
Goda et al. 2014), but it remained unclear how this transform-
ation takes place and what representations bridge them in the
midlevel areas along the pathway.

Several studies have examined representations of textural
features in midlevel visual areas (Hanazawa and Komatsu 2001,
Arcizet et al. 2008; El-Shamayleh and Movshon 2011; Freeman
et al. 2013; Okazawa et al. 2015; Yu et al. 2015; Kohler et al.
2016). Among them, recent studies suggested that statistical
image features combining V1-like filter responses (i.e. spatial-
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frequency and orientation filter responses) are a possible higher-order features are considered to be purely “V2-level”
representation of naturalistic texture in the midlevel areas image representation or whether they gradually develop along
(Freeman et al. 2013; Okazawa et al. 2015; Ziemba et al. 2016). the course of the ventral visual pathway.

Those “higher-order features,” originally described in Portilla To address that issue, the present study directly compared
and Simoncelli (2000), consist of various combinations of texture selectivity and the underlying higher-order feature
Gabor-like filter responses with different orientations, scales, representation in V2 and V4 using exactly the same methods.
and positions (see Fig. 1C). They provide nearly complete We previously measured the texture selectivity of V4 neurons
description of the textures in the sense that naturalistic tex- by adaptively exploring their preferred stimuli from among
tural images (e.g. the textures of barks or fabrics) can be thousands of naturalistic textures (Okazawa et al. 2015). We
synthesized using only those image features (Portilla and then linearly fit the neural responses using the higher-order
Simoncelli 2000). Freeman et al. (2013) found that neurons in features. Here, we applied the same stimuli and analyses to V2
V2 respond more strongly to naturalistic textures having for direct comparison. We found that, while both of the areas
those higher-order features than to spectrally matched exhibit selectivity for higher-order features, V4 responds more
phase-scrambled images (noise images) lacking them. We strongly to higher-order features than V2. This suggests a grad-
subsequently showed that neural selectivity for naturalistic ual development of higher-order feature representation along
textures in V4 could be parametrically fit by a version of the ventral pathway.

higher-order features (Okazawa et al. 2015), indicating that
those features are represented in mid-level areas along the
ventral pathway.

Materials and Methods

Presuming that these higher-order features account for a We recorded neurons in area V2 and V4 in 2 female macaque
part of the mechanisms for texture perception, a question monkeys (“SI” and “EV,” Macaca fuscata weighing 5.3-6.2 kg). All
arises as to how the representation of those features change procedures for animal care and experimentation were in
along the ventral pathway, in particular how the areas thought accordance with the U.S. National Institutes of Health Guide for
to respond to those features (ie. V2 and V4) differentially the Care and Use of Laboratory Animals and were approved by the
respond to them. Because the representation first emerges in Institutional Animal Care and Use Committee of the National
V2 (Freeman et al. 2013; Ziemba et al. 2016), one plausible scen- Institute of Natural Sciences, Japan. Details of the methods,
ario is that V2 computes the higher-order features and sends including visual stimulus generation and analyses, are also
copies to V4. Alternatively, those features may be further elabo- described elsewhere (Okazawa et al. 2015). All procedures used
rated in V4. Resolving this question will clarify whether the were identical for V2 and V4, as described below.
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Figure 1. Stimuli used in the experiments and parameters defining the stimuli. The figures are adopted from Okazawa et al. (2015). (A) Examples of stimuli used in
the experiment. We created 10 355 images and explored neurons’ preferred textures by iteratively sampling a fraction of the stimuli in set. The stimuli originated
from 8 material categories. The panel shows 3 example stimuli from each category. Colors of the edges surrounding the textures represent individual material cat-
egories corresponding to the dot colors in B. (B) Sampling space for adaptive exploration of textures. We projected all 10355 stimuli onto 7-dimensional sampling
space using Fisher’s LDA. The panel depicts the first 2 dimensions. Each dot represents 1 image, and the dot colors represent material categories. (C) Model describing
the image features. These features were used to synthesize images (Portilla and Simoncelli 2000). The total number of parameters in the original model was 740,
which could be classified into 7 distinct groups of statistical features (marginal [13], linear cross position [125], linear cross scale [96], energy cross position [400], spec-
tral [18], energy cross scale [48], energy cross orientation [40]; numbers in the brackets indicate the numbers of parameters in each group). The uppermost image
represents the input texture. “Marginal” include pixel-level image statistics such as mean luminance. The image is convolved with Gabor-like filters to generate
“responses of linear filter.” From those, the model computes correlations between spatially neighboring filter outputs (“linear cross position”) and correlations
between filters with neighboring scales (“linear cross scale”). “Responses of energy filters” correspond to the amplitudes of the linear filters. From those, the model
extracts average amplitudes of filter outputs (“spectral”), correlations between neighboring orientations (“energy cross orientation”), between spatial neighbors
(“energy cross position”), and between neighboring scales (“energy cross scale”). Note that “spectral” can be considered as V1-level representation, while others cor-
respond to higher-order features. For the fitting of neural responses, we used a compact version of the model, which contained only 29 parameters (see “Fitting to
neuronal responses using the synthesis parameters” in Materials and Methods).

0202 1890100 1€ U0 1s9nB Aq LG49G0€//98Y/0 L/ LZ/910IME/100189/W00"dNO"0IWSPEdE//:SARY WOy POpeojumod



Texture Representation in Macaque V2 and V4 Okazawaetal. | 4869

Stimulus Presentation and Electrophysiology

Stimuli were presented on a cathode ray tube monitor (frame
rate: 100 Hz, Totoku Electric) situated at a distance of 57 cm
from the monkeys. The stimuli were presented on the monitor
using a graphics board (VSG, Cambridge Research Systems) and
calibrated with a colorimeter (CS200, KONICA MINOLTA). Image
resolution was 800 x 600 pixels (20 pixels/degree). The monkeys
fixated on a small white spot (visual angle: <0.1°) at the center
of the display. Eye position was monitored using an infrared
eye camera system (ISCAN), and a trial was aborted when the
eye position departed from a 1.5-2.2° diameter of fixation
window.

Under aseptic conditions and general anesthesia, we surgi-
cally attached 2 chambers to the skull for V2 (left hemisphere
of both monkeys) and V4 (right hemisphere of both monkeys),
respectively. The stereotaxic co-ordinates of the center of the
V2 chamber were 11-22mm posterior and 9-10mm lateral.
Within the chamber, we inserted a single tungsten microelec-
trode (200 pm in diameter, 1-2.5 MQ at 1kHz; FHC, Bowdoin, ME
or Unique Medical, Japan) along the sagittal plane through a
guide tube attached to a plastic grid. The electrode penetrated
the dura matter, went through V1 and white matter, and
approached V2 in the lunate sulcus from its deeper layer. We
confirmed the recording site using magnetic resonance imaging
images, receptive field properties (sizes and positions), and
traces of spike-activities encountered during the penetration.
The stereotaxic co-ordinates of center of V4 chamber were
0-5mm posterior and 24-29 mm lateral. An electrode, inserted
through a guide tube along the coronal plane, penetrated
through the dura matter and directly approached V4 in the pre-
lunate gyrus. We recorded from 78 neurons in V2 (monkey SI
23; EV 55) and 109 neurons in V4 (SI 64; EV 45). We previously
used the same 109 V4 neurons to report their texture selectivity
(Okazawa et al. 2015). In both monkeys, all neurons in V2 were
recorded after the recording from V4. The center and size of a
neuron’s receptive field were determined using a small geomet-
ric stimulus (circle, square, star, triangle, or bar) that evoked
the neuron’s maximal response. We changed the position of
the geometric stimulus in 1° intervals and determined the bor-
der of the receptive field as the position at which the visual
response ceased. For 2 cells in V4 that did not respond to any of
the small stimuli, only the center of the receptive field was
determined using a texture (6.4° x 6.4°). During the recordings,
a trial started with presentation of a fixation spot, after which
textural stimuli were presented 5-6 times within each trial.
Each stimulus presentation lasted 200 ms with 200-ms blank
intervals. Each stimulus was repeated at least 5 times and usu-
ally 8 times.

Visual Stimulus Generation

Stimuli were generated using a texture synthesis procedure
described in Portilla and Simoncelli (2000) with a program pro-
vided by the authors (http://www.cns.nyu.edu/~lcv/texture/).
The program extracts a collection of higher-order statistics and
spectral statistics from an image (Fig. 1C) and synthesizes a
new image having nearly identical statistical parameters.
During the synthesis, the algorithm starts from a white-noise
image and iteratively modifies the image to match its statistics
with the desired one. We performed 50 iterations and con-
firmed the convergence of parameters. For the synthesis, we
used 4 scales and 4 orientations of Gabor-like filters to extract
the statistics. For the parameters describing correlations

between spatially neighboring filter outputs, correlations
within a 7-pixel square were taken into account.

We generated 10 355 synthetic textures. Some of the images
were synthesized from the synthesis parameters of 4170 photo-
graphs sampled from 8 material categories (bark, sand, fabric,
fur, leather, stone, water, and wood; an average of 521 images
for each), which were collected from commercial databases
(SOZATUJITEN, Datacraft, Japan) and the Internet. The other 6185
images were generated using synthesis parameters interpo-
lated from the above images. The interpolation was performed
in a sampling space explained in the next paragraph. The pur-
pose of interpolation was to mitigate inhomogeneous distribu-
tions of stimuli within the sampling space. For this, we
computed the distances of 20 adjacent textures in each stimu-
lus within the sampling space and interpolated stimuli if the
distances were more than 3 standard deviations (SDs) of the
whole distance distribution.

We projected all images onto a sampling space (Fig. 1B),
which enabled the adaptive sampling of the stimuli within the
space. To generate a sampling space, we normalized individual
synthesis parameters (740 parameters) across all natural tex-
ture images, denoised them using principal component ana-
lysis, which reduced the dimensions to 300, and finally
projected them into a 7-dimensional space using Fisher’s linear
discriminant analysis (LDA). LDA finds the linear subspace that
maximally separates different categories (Bishop 2006). As
mentioned above, we added 6185 points by interpolating the
parameters of 4170 textural images within the sampling space.
No category label was assigned to those interpolated images.
The size of the images was 128 x 128 pixel (corresponding to
6.4°). They were all gray scale. The mean and SD of the lumi-
nance histogram were, respectively, equalized to 15 and 6cd/
m? to avoid the effects of these low-level factors. We presented
the images on a gray background (10 cd/m?).

Adaptive Sampling Procedure

To efficiently find the neurons’ preferred textural stimuli, we
applied an adaptive sampling procedure (Yamane et al. 2008).
We first randomly selected 50 textures (the first generation)
from the 10355-image set and recorded the single-cell
responses they elicited. Then, in subsequent generations, we
selected stimuli among neighbors of ancestor stimuli selected
from earlier generations based on the ranks of the elicited firing
rates: 13 from the top 10% of stimuli, 10 from the next 10-24%,
5 from the 24-44%, 5 from the 44-70%, and 5 from 70-100%.
Each subsequent generation also included 12 new, randomly
selected stimuli. We included the random sampling to keep the
process from falling into local minimums. We repeated this
procedure at least 5 times and at most 10 times to record neur-
onal responses to 250-500 textures.

Using this approach, we were able to present multiple stim-
uli that evoked strong firings and thus adequately characterize
the neuron’s tuning properties. The rationale behind this adap-
tive sampling procedure is as follows. If there is only a small,
predetermined stimulus set, it is less likely to observe strong
responses, and one will end up recording only from neurons
responsive to the predetermined stimuli, which would result in
a biased sampling of the neural population. Furthermore, if a
neuron responded to only a fraction of the images, it would be
challenging to fit a model to the data, since the information
available from the small number of effective stimuli is limited.
Obtaining strong neural responses, however, is not trivial when
the potential dimensionality of the stimulus space is large and
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there is little prior information about the neurons’ tuning. The
adaptive sampling procedure should mitigate these issues by
dynamically adjusting the stimulus set based on obtained
neural responses. And in fact, we succeeded in obtaining
higher-firing rates using this method as is described in the
Results section (see “Texture selectivity in V2 and V4”) and in
our earlier report (Okazawa et al. 2015).

Analysis of Neuronal Firing Rates

Each neuron’s mean firing rates were defined as the firing rates
averaged across a 200-ms period beginning 50 ms after stimu-
lus onset and ending 50 ms after offset for both V2 and V4. We
subtracted the baseline activity, defined as the firing rates dur-
ing the 300 ms before the first stimulus onset averaged across
all trials in each generation of adaptive sampling.

We characterized texture selective properties using several
measures. As a measure of a neuron’s ability to discriminate
textural stimuli, we used discrimination index (Prince et al.
2002; Sanada et al. 2012):

Rmax = Rmin 1)

Rimax + Rmin + 2¢/SSE/(M—-N) '

where Rpyax and Rpyin are the maximum and minimum average
firing rates across all stimuli. We used square roots of firing
rates instead of the raw firing rates to roughly equalize the var-
iances of firing rates (Prince et al. 2002). SSE is the sum of
squared error of the responses to individual stimulus presenta-
tions around the average firing rates, M is the total number of
stimulus presentations, and N is the number of stimuli. Thus,
the discrimination index indicates the difference between the
maximum and minimum firing rates normalized by their sum
and variability of firing rates. The index is helpful for compar-
ing different brain regions, as the variability of responses may
differ across areas. As a simpler control, we also used a simpler
version of the discrimination index that did not incorporate the
variability of the firing rates (i.e. difference between the max-
imum and minimum firing rates divided by their sum). The dis-
crimination indices range from zero to one, and larger indices
indicate better discriminability.

We also evaluated sharpness of neuronal tuning using
sparseness index (Vinje and Gallant 2000):

. Ri)? R? 1
sparseness index (SI) = | 1 - (Zl ﬁ) /Zi N /(1 - ﬁ)' 2

discrimination index (DI) =

where R; is the firing rate elicited by stimulus i and N is the
number of stimuli. The value ranges from zero to one, and lar-
ger sparseness indices indicate sharper selectivity. Because it
has been suggested that this index is vulnerable to changes in
other firing properties such as minimum firing rates and
Poisson properties of spike production (Lehky et al. 2005; Rust
and DiCarlo 2012), we also computed the entropy (Sg) as
another measure of the sharpness of tuning that provides
information about the shape of the response distribution
invariant to the mean response. Entropy was defined as

M
Se=2.074+ Y. p(R;)log,(p(R;)AR, 3
j=1

where responses to N images were placed in M bins, where M is
calculated as the square root of the number of images N (Lehky
et al. 2005). M bins divided the entire range of the responses
with an equal interval AR. The value 2.074 corresponds to the

entropy of a Gaussian distribution with unit variance, which is
the maximum value of possible entropies when the variance is
fixed. Before computing entropy, we rescaled the firing rates to
have unit variance. Sg ranges from 0 to 2.074, with larger values
indicating sharper selectivity. We also computed a “corrected
sparseness index,” which amends the bias originating in the
Poisson property of spike production in a cell (Rust and DiCarlo
2012). Because the Poisson distribution is positively skewed,
responses to some stimuli can accidentally exhibit a large firing
rate, which results in an overestimation of the sparseness
index. As described in Rust and DiCarlo (2012), we assumed
that a neuron’s rank-order response curve approximately fol-
lows an exponential form: R(x) = Ae™ , where x is a stimulus
rank sorted by the evoked firing rates (x can take the value
from 1 to the number of stimuli). We then computed the
sparseness index of the estimated firing rates R(x) instead of
the actual firing rates. To obtain the free parameters A and «,
we used a maximum likelihood estimation, presuming that the
recorded firing rates for stimulus x were drawn from Poisson
distributions of R(x).

Fitting to Neuronal Responses Using the Synthesis
Parameters

The purpose of this fitting analysis is to examine how well
neural activities could be explained using the spectral and
higher-order statistical parameters used in the synthesis algo-
rithm (Fig. 1C). The total number of parameters in the original
model is 740, which could be classified into 7 distinct groups of
statistical features (marginal [13], linear cross position [125],
linear cross scale [96], energy cross position [400], spectral [18],
energy cross scale [48], energy cross orientation [40]; numbers
in the brackets indicate the numbers of parameters in each
group). From an input texture, “marginal” statistics are com-
puted, which include mean, SD, skewness, and kurtosis of
luminance histogram. The image is convolved with Gabor-like
filters to generate “responses of linear filter” (Fig. 1C). From
those, the model computes correlations between spatially
neighboring filter outputs (“linear cross position”) and correla-
tions between filters with neighboring scales (“linear cross
scale”). Then, “responses of energy filters” are obtained by com-
puting the amplitudes of the linear filters. From those, the
model extracts average amplitudes of filter outputs (“spectral”),
correlations between neighboring orientations (“energy cross
orientation”), between spatial neighbors (“energy cross pos-
ition”), and between neighboring scales (“energy cross scale”).
Among these 7 groups of statistics, “spectral” can be considered
as “Vl-level representation” because they correspond to the
average responses of energy filters of different orientations and
scales, while other groups are considered as “higher-order fea-
tures.” Among the “marginal” statistics, mean and SD of lumi-
nance are matched in our stimulus set and we only used
skewness of luminance histogram. This parameter was cate-
gorized into higher-order features.

Because the number of parameters in the synthesis model is
large (740), which is unfavorable for the fitting analysis, we gen-
erated a compact version with 29 parameters that preserves
the core features of the model. The sampling space we gener-
ated for the adaptive procedure was also derived from the syn-
thesis model (Fig. 1B), but we did not directly use them for
fitting because we found that the space did not have a suffi-
cient power to predict neural responses compared with the 29
parameters.
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We used 2 strategies to generate a compact version of the
synthesis parameters. First, because parameters extracted from
neighboring filters are correlated, we averaged across the
values of neighboring filters (originally 4 scales X 4 orientations)
and compressed them into 2 scales x 2 orientations. Second,
we applied principal component analysis for highly redundant
parameter groups such as “linear cross position” and “energy
cross position” statistics (Fig. 1C). Although they have more
than hundreds of parameters, the first 3 to 4 principal compo-
nents explain more than 80% of the variances. We therefore
retained only those principal components. We performed prin-
cipal component analysis only within these parameter groups
but not across the whole parameter set so as not to mix differ-
ent parameter across groups in the model.

We used Ll-penalized linear least-squares regression
(known as lasso) (Tibshirani 1996) to fit the firing rates of neu-
rons elicited by 250-500 textures. The regression minimizes the
following loss function L:

N
1
L=— nFR; — PS;-W)24+A W1, 4
Nl-;( i — PS;iW) @

where N is the number of stimuli, nFR; and PS; are the observed
firing rate normalized within the cell and synthesis parameters
for image i, W is the fitting weights, and X is the regularization
coefficient. We cross-validated the performance of the fit by
partitioning the data into training (randomly selected 90% of
presented textures) and test (remaining 10%) sets. Correlation
coefficients (Fig. 5A) were computed between the actual neural
responses in the test set and neural responses predicted from
the fitting result. We repeated this procedure 10 times with dif-
ferent combinations of training and test sets and then averaged
across their obtained correlation coefficients (so-called 10-fold
cross-validation). We also chose A in eq. 4 using cross-
validation (5-fold) within the training set so as to provide the
optimal fitting performance within the training set. The statis-
tical significance of the fitting was tested using a permutation
test in which we shuffled the combinations among the textures
and firing rates to obtain the distribution of correlation coeffi-
cients when there is no relationship between stimuli and firing
rates. For the final estimation of fitting weights (displayed in
Fig. 5B), we used the whole data set without the cross-
validation. For the further analyses using the weights, we nor-
malized the weights within the cells so that their mean
becomes one.

To statistically test the difference in fitting weights between
V2 and V4, we performed a permutation test. We first com-
puted the population average of the fitting weights for V2 and
V4 (Fig. 5C) and quantified their difference using the sum of
squared error: SSE =Y, (V2;-V4;)?2, where V2; and V4; indicate
the average weights of statistical group i. During the permuta-
tion test, we computed the SSE after randomly shuffling neu-
rons between V2 and V4 while preserving the number of
neurons in each area. We repeated this procedure 100 000
times and computed the probability that the SSE of the shuffled
data exceeded the actual SSE.

To gain insight into how stimulus selectivity emerges over
time, we also analyzed the temporal dynamics of the firing
rates and selectivity for image statistics. To draw peristimulus
time histograms (PSTHs; Fig. 7A), we counted the numbers of
spikes in nonoverlapping 10-ms windows and averaged across
all stimuli and neurons. The time course of selectivity for
image statistics (Fig. 7C) was obtained by performing the above
fitting analysis for firing rates in each time bin.

Results
Texture Selectivity in V2 and V4

We analyzed 78 neurons in V2 (monkey SI 23; EV 55) and 109
neurons in V4 (SI 64; EV 45). The eccentricities of their receptive
field centers were comparable (V2: 5.1 + 1.3° V4: 6.0 + 2.4°). We
tested the responses of every neuron encountered during the
experiment and recorded all neurons that responded to any of
our textural stimuli (144 neurons in V2; 225 neurons in V4). Of
these, 138 neurons in V2 (96%) and 214 neurons in V4 (95%)
showed significant texture selectivity (P < 0.05; Kruskal-Wallis
test). We adaptively explored their preferred stimuli among
10 355 synthetic textures generated prior to the experiment. In
this adaptive sampling procedure, we first recorded the
responses of a single cell to 50 randomly selected textures. We
then chose next textures such that spaces around the preferred
textures were densely sampled in the predefined texture space
(Fig. 1B). Among the recorded texture selective cells, we ana-
lyzed neurons that could be recorded at least 5 generations of
the adaptive sampling (i.e. more than 250 stimuli; 78 neurons
in V2; 109 neurons in V4). On average, we sampled responses to
297 + 79 stimuli for each V2 cell and 357 + 83 for each V4 cell.

All analyzed neurons in both V2 and V4 showed significant
texture selectivity (P < 0.001, Kruskal-Wallis test). These neu-
rons vigorously responded to some stimuli but not to others
(Fig. 2). One V2 neuron, for example, responded strongly to
wavy textures, such as the surface of water (Fig. 24; “V2 cell 17),
while another responded to mesh textures such as leather
(Fig. 2A; “V2 cell 2”). Similarly, individual V4 neurons preferred
various types of textures such as those of wood (Fig. 2A; “V4
cell 1”) and fabric (Fig. 2A; “V4 cell 2”). On the whole, visual
inspection of their preferred textures revealed no clear differ-
ences between V2 and V4 (more examples in Fig. 2B).
Quantitatively, there was no significant difference in the
strength of the texture selectivity between the areas when
tested using a discrimination index (V2, 0.72 + 0.12; V4,
0.74 + 0.08; P = 0.50, Mann-Whitney U test; see eq. 1 in
Materials and Methods), although we found several differences
in response properties (e.g. mean evoked firing rates, sparse-
ness of responses) between the areas, which we elaborate on
later (“response characteristics” section in Results).

Our adaptive sampling procedure helped us to efficiently
collect neural responses to textures that evoked high firing
rates in each neuron. For each generation of sampling, we
chose a new set of textures such that many were descendants
of textures that evoked strong responses, while others were
randomly selected textures (Fig. 3A). We found that at the
population level in both V2 and V4, the textures chosen as des-
cendants of those that elicited strong responses were indeed
more likely to elicit stronger responses than either the descen-
dants of textures that elicited only weak responses or randomly
selected stimuli (Fig. 3B; group A vs. B-E, R: P < 0.001; Wilcoxon
signed rank test). This indicates that the sampling procedures
succeeded in collecting more responses than a random
sampling.

Tuning for Image Statistics

As in our earlier study (Okazawa et al. 2015), we examined how
well the neurons’ selectivity for textures can be explained by
sensitivity for spectral and higher-order image statistics.
Because the higher-order statistics in the texture synthesis
model consisted of a very large number of parameters (740), we
first reduced that number to 29 using dimensionality reduction
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techniques (see Materials and Methods). These 29 parameters
included the average powers of spatial-frequency and orienta-
tion filters (spectral statistics; green label in Fig. 1C) considered
as V1-level representation, as well as combinations of those fil-
ter responses with different scales, orientations, and positions
(higher-order features; other colors in Fig. 1C).

We found that texture-selective responses were associated
with the presence of specific image statistics in both V2 and V4.
To gain information about the relationships between textures
and the statistical parameters, the most preferred 2 textures
and their statistical parameters for example neurons (same as
those shown in Fig. 2A) are depicted in Fig. 4. V2 cell 1 (Fig. 4,
upper left) preferred wavy textures that had strong horizontal
low-frequency spectral components, as depicted in the “spec-
tral” graph, which indicates the amplitudes of each spatial-
frequency and orientation component. The images did not
have strong higher-order features such as “energy cross scale.”
By contrast, the preferred textures of V4 cell 1 (Fig. 4, upper
right) had strong “energy cross scale” correlations (the correl-
ation of energy filters between 2 scales) between high- and low-
frequency vertical filters due to the presence of sharp edges in
the images. The 2 images did not have consistent spectral fea-
tures. V2 cell 2 (Fig. 4, lower left) preferred textures that con-
tained “energy cross orientation” correlations (the correlation

of energy filters between 2 orientations) between vertical and
horizontal filters, which are frequently observed in images con-
taining mixtures of vertical and horizontal lines. Similarly, V4
cell 2 (Fig. 4, lower right) preferred textures containing “energy
cross orientation.”

To quantify the relationship between neurons’ responses
and the statistical parameters of textural images, we fit the fir-
ing rates to all presented textures using a regularized (L1-pena-
lized) linear regression (Tibshirani 1996) of the 29 parameters,
including spectral and higher-order parameters. The regular-
ized linear regression is less likely to fall into overfitting of data
than typical linear regression, especially when the number of
fitting parameters is large. To comply with the criterion used in
our earlier study (Okazawa et al. 2015), we excluded a fraction
of cells that responded sparsely to the textural stimuli (sparse-
ness index > 0.75; see Materials and Methods), since such a
sparse response is unfavorable for fitting analyses (remaining
cells: V2, 64 cells (82%); V4, 90 cells (83%)). We obtained similar
results when those cells were not excluded, as is described in
Supplementary Figure 1. To evaluate the fitting performance,
we divided all stimuli presented to a cell into training and test
groups; the fitting weights were then computed using the train-
ing set (90% of stimuli), and correlations between predicted and
observed firing rates were examined using the test set (10% of
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Figure 3. Efficient collection of effective stimuli using an adaptive sampling pro-
cedure. (A) The schema of adaptive sampling. To generate a new set of stimuli
(“Generation N+1”), we sorted the firing rates elicited by all stimuli presented so
far (“Generation 1, 2, ... , N”) and chose textures in the sampling space so that
more stimuli were selected from neighbors of effective textures. We also
included 12 randomly sampled textures (“Rand (R)”) in each generation. The fig-
ure is adopted from Okazawa et al. (2015). (B) Firing rates elicited by textures
sorted based on the textures’ parent categories (A-E and R corresponds to those
in panel A). Firing rates were normalized in each cell. We averaged neural
responses obtained in all generations except the first one, which does not have
parent categories. Firing rates tended to be large when the parent stimuli eli-
cited strong responses. Error bars indicate the standard error of the mean (SEM)
across cells. The V4 data were adopted from Okazawa et al. (2015).

stimuli). This means the fitting performances were examined
using data independent of those used to estimate the weights.
For many neurons in V2 and V4, we obtained statistically sig-
nificant correlations between the actual firing rates and the fir-
ing rates predicted by the model (Fig. 5A). In V2, 56 of 64
neurons (88%) showed correlations significantly above the
chance level (r averaged across 64 cells = 0.45; P < 0.05, permu-
tation test). In V4, 83 of 90 neurons (92%) showed a significant
fit (r averaged across 90 cells = 0.46). These fitting performances
were statistically indistinguishable (P = 0.89, t-test using
Fisher’s Z-transformation). The fitting explained 29 + 17% (V4)
and 31 + 14% (V2) of the explainable variance in the firing rates
computed by subtracting the trial-by-trial variance from the
whole variance (Pasupathy and Connor 2001). We also exam-
ined the fit of neural responses using texture models other
than the synthesis parameters, but we found no models that
outperformed our texture model (Supplementary Figure 2) in
terms of the fitting performance obtained using the same fitting
procedure.

The linear fitting weights illustrated in Fig. 5B indicate that
individual cells have weights on various different parameters.
Although the significant fitting performances do not mean that
our texture model is the “true” underlying model of V2 and V4,
it is worth inspecting how the model weighted parameters to
fit the neural responses. Any differences in weighted para-
meters between V2 and V4 will give us insight into how the
2 areas differentially respond to textures. In the color map
shown in Fig. 5B, the brightness of the dots indicates the ampli-
tude of weights (normalized within individual cells) and the

colors indicate the groups of statistical features, which corres-
pond to the label colors in Fig. 1C. Cells were sorted based on
the most preferred group of statistical features. Individual col-
umns contain a few bright dots, meaning that each cell has
weight on a few parameters. For example, some cells exclu-
sively had weight on spectral features (columns that contain
bright green dots), which are considered to be V1-level
representation, while others had weight on other higher-order
features (columns that contain bright colors other than green).
These weight maps were comparable between V2 and V4,
though V2 appears to contain slightly more neurons having
weights on spectral features (green dots), while V4 appears to
contain a larger number of neurons having maximum weight
on higher-order energy features (yellow, orange, and red dots
at the right bottom corner of the diagram).

At the population level, we found similar but slightly differ-
ent weights for statistical parameters in V2 and V4. To quantify
the population-level selectivity, we averaged all neurons’
weights for each group of statistical features (Fig. 5C). Both V2
and V4 showed stronger weights for spectral features as well as
higher-order statistics such as those called “energy cross orien-
tation” or “energy cross position.” The population-level prefer-
ences for statistical features looked similar in V2 and V4,
though V2 appears to have relatively stronger weights for the
spectral statistics, and V4 appears to have stronger weights for
energy statistics. A statistical test revealed significant differ-
ences in the distributions of weights between V2 and V4
(P = 0.006; permutation test; see Materials and Methods).
Significant differences in individual parameters were seen for
“spectral,” “energy cross orientation,” “energy cross position,”
and “energy cross scale” statistics (P < 0.05, Mann-Whitney
U test without Bonferroni correction). With Bonferroni correc-
tion, “energy cross position” showed a significant difference
(P = 0.005). That pattern—greater weights for energy statistics
and smaller weights for spectral statistics in V4—was consist-
ently observed in each monkey (Fig. 5D).

To quantify the relative balance of weights between the
spectral and higher-order parameters, we computed a higher-
order ratio, which is the mean amplitude of weights for higher-
order statistics divided by the sum of the mean amplitudes of
spectral and higher-order statistics. When we sorted neurons
according to the amplitudes of the higher-order ratios (Fig. SE),
we found that the V4 distribution consistently exceeded that of
V2 (P = 0.035; Mann-Whitney U test). Taken together, these
findings indicate that, while the weights of V2 and V4 are gen-
erally comparable, there is a relative imbalance in their select-
ivity for V1-level spectral and higher-order features.

While the eccentricities of the receptive fields are similar
between V2 and V4 (V2: 5.1 + 1.3% V4: 6.0 + 2.4°), there was a
large difference in the average size of the receptive fields (V2,
2.4 + 1.2°; V4, 6.1 + 3.1°). To examine the effect of the smaller
receptive fields in V2, we recalculated the statistical parameters
of textural images after cropping the central parts so that the
stimulus size was the same as the receptive field size of each V2
neuron. We then refit the neural data using those recalculated
parameters. This revealed that the amplitudes of the fitting
weights for each group of statistics were little affected by the
size of patches (Pearson’s correlation coefficient with Fig. 5C, V2
data: 0.99). We also found that there is no significant correlation
between receptive field size and the amplitude of the higher-
order ratio in either area or across areas (V2: r = —=0.095, P = 0.49;
V4: r = —-0.11, P = 0.33; both: r = 0.008, P = 0.92). The absence of
correlation indicates that the differences in selectivity between
the 2 areas cannot be accounted for by the receptive field sizes.

0202 1890100 1€ U0 1s9nB Aq LG49G0€//98Y/0 L/ LZ/910IME/100189/W00"dNO"0IWSPEdE//:SARY WOy POpeojumod


http://CERCOR.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw282/-/DC1

4874 | Cerebral Cortex, 2017, Vol. 27, No. 10

Spectral
High freq.

Low freq.

vV H

Energy scale

R

Spectral
High freq.
Low freq.

vV H

Energy orientation

xS

V4 cell 1 (energy scale)

V2 cell 2 (energy ori.)

(‘n"e) sansuaju|

(‘n"e) sapisuaju|

V4 cell 2 (energy ori.)

(‘n"e) sansuaju|

(‘n"e) sanisuaju|

Figure 4. Relationships between textures and statistical parameters. The 2 most preferred textures of the 4 example cells area depicted with their statistical para-
meters. The 4 cells (2 V2 cells and 2 V4 cells) correspond to those in Fig. 2A. Each neuron’s preferred statistics is indicated in the parentheses, which was obtained
using the fitting analysis described in Fig. 5. For each texture, we depicted “spectral” parameters and “energy scale” or “energy orientation” parameters. The spectral
parameters consist of 4 components: high-/low-frequency vertical (V)/horizontal (H) amplitudes. Colors indicate the amplitudes of those components normalized
across all texture stimuli. “Energy scale” and “energy orientation” parameters indicate co-occurrence of responses between 2 filter outputs with different scales and
orientations, respectively. We depicted the locations in the images that have such co-occurrences using a color scale. Actual parameters used in the fitting analysis

were the average of those co-occurrences across locations.

We also fitted the neural responses using only the spectral
statistics, which enabled us to examine how well the spectral
parameters alone account for the neural responses. The fitting
performances for neurons in both V4 and V2 significantly
declined (V4: r = 0.35, P < 0.001, V2: r = 0.40, P < 0.001; Wilcoxon
signed rank test; the results of 10-fold cross-validation). The
differences in fitting performances are unlikely to be explained
solely by the numbers of parameters as we tested the perfor-
mances using an independent test set. Because the V2 fitting
performance deteriorated to a lesser extent, the fitting perfor-
mances using the spectral statistics were significantly better in
V2 than in V4 (P = 0.049, Mann-Whitney U test). We also exam-
ined other models representing spectral features with larger
numbers of parameters (Supplementary Figure 2; “gist,” “spec-
tral RF”). These models tended to fit neural responses better for
V2 than for V4 although none outperformed our texture model.
These results are consistent with the idea that V2 neurons
exhibit stronger preference for spectral parameters.

Neural Responses to Spectrally Matched Noise Images

To obtain independent support for the observations in the fit-
ting analyses, in a subset of cells, we performed a control
experiment using noise images that lacked higher-order feature

(35 cells in V2 and 83 cells in V4). We chose 5 textures that
were evenly selected from the cell’s preferred and nonpreferred
stimuli and generated corresponding control (“noise”) images
by randomizing the phases of the spatial-frequency compo-
nents for each original texture in the Fourier space (Fig. 6A
shows example images). Those noise images had the same
spectral statistics as the original textures, but their higher-
order statistics were greatly deteriorated. Indeed, when we
compared the amplitudes of the higher-order parameters
between all the textures and the noise images used, significant
differences were found in “marginal” and all “energy” statistics
(n =590 textures; P < 0.05, Wilcoxon signed rank test). Thus, dif-
ferences between the responses to the textures and those to
the corresponding noise images can be a good measure of the
effect of those higher-order statistics on neuronal responses.
Consistent with the fitting analyses, we found significant
differences between responses to the textures and those to the
noise stimuli in both V2 and V4 (Fig. 6B; V2: P = 0.002, V4:
P < 0.001; Wilcoxon signed rank test). This indicates that
removing higher-order statistics reduced neural responses in
both areas. To determine which area showed the larger differ-
ence between responses to textures and noise, we computed a
modulation index, which is the difference in normalized firing
rates between the textures and noise images divided by their
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Figure 5. Result obtained by fitting neuronal responses using the spectral and higher-order image statistics depicted in Fig. 1C. (A) Distribution of the fitting perform-
ance. The fitting performance was evaluated using Pearson’s correlation coefficients between neuronal responses and responses predicted by the model (the
abscissa). Independent data were used for fitting and computation of the correlation (“10-fold cross-validation”; see Materials and Methods). The black bars indicate
the neurons that showed significant fit (P < 0.05, Permutation test). The arrowhead denotes the average correlation coefficient across cells. The V4 data were adopted
from Okazawa et al. (2015). (B) Linear fitting weights of all neurons depicted using colors and pixel brightness. We used 29 parameters to fit individual neuron’s
responses, and the vertical axis corresponds to those 29 parameters. The brightness of colors indicates the strength of the absolute amplitude of the weights (the
brightest: maximum weight, the middle: weights more than half maximum, the darkest: weights less than half maximum). Colors indicate different groups of image
statistics (see Fig. 1C). The neurons were sorted based on their most preferred groups of image statistics. Gray arrows point to the example cells shown in Fig. 4. (C)
Weights averaged across cells. The weights were normalized within each cell before the averaging. Bar colors indicate groups of image statistics and correspond to
colors in Fig. 1C. (D) Normalized weights for each group of statistical parameters averaged across cells in V2 and V4 for each monkey. The gray oblique line indicates
unity. Colors represent different groups of statistical parameters: S, spectral; M, marginal; LP, linear position; LS, linear scale; EP, energy position; EO, energy orienta-
tion; ES, energy scale. (E) Distributions of higher-order ratios for V2 (n = 56) and V4 (n = 83). The higher-order ratios were computed by dividing the mean amplitude of
the weights for higher-order parameters by the sum of the mean amplitudes for spectral and higher-order parameters. We sorted neurons based on the amplitudes
of the higher-order ratios and displayed them as cumulative histograms. Line colors denote V2 (blue) and V4 (red).

sum. The modulation index was larger in V4 than in V2 (Fig. 6C;
P = 0.008; Mann-Whitney U test), which is consistent with the
idea that V4 responds to higher-order features more strongly
than V2. We also examined how well the responses to noise
stimuli could be explained using the fitting weights obtained
above. For each cell, we computed the synthesis parameters of
the presented noise images and calculated the predicted
responses to those images using the neuron’s fitting weights.
The average correlation coefficients between the observed and
predicted responses to the 5 noise images were 0.48 for V2
(n = 35) and 0.47 for V4 (n = 83), which are similar to those
obtained in the fitting analysis. This result further supports the
plausibility of fitting analysis.

Dynamics of Tuning

We next sought to analyze how the selectivity for spectral and
higher-order image features changes over time in V2 and V4
because the temporal dynamics of stimulus selectivity provides
insight into the mechanisms of sensory processing (Hegdé and
Van Essen 2004; Brincat and Connor 2006; Hegdé 2008). PSTHs

of neural firing rates displayed earlier onset in V2 than in V4
(Fig. 7A). At the population level, the responses in V2 began at
around 30 ms and peaked at around 70 ms, while those in V4
began at around 50ms and peaked at around 120ms. We
binned spikes using 10-ms nonoverlapping time windows and
conducted the fitting analysis described above for each of these
time bins. The fitting performances, quantified using Pearson’s
correlation coefficient, exhibited time courses similar to those
of the PSTHs (Fig. 7B).

The dynamics of the weights for spectral and higher-order
statistics revealed characteristic differences between V2 and
V4 (Fig. 7C). For the spectral parameters, V2 showed an early
and sharp rise in weight followed by a continuous decline,
while V4 showed a relatively weak weight. A significant dif-
ference was observed during the early period (40-90ms;
P < 0.05, Mann-Whitney U test). For the higher-order features,
V2 again showed an earlier onset, but, in contrast to spectral
parameters, V4 showed larger weights. Consequently, V4
showed significantly larger weights around 100 ms, though a
difference was also observed around 60 ms due to the earlier
onset in V2.
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Figure 6. Control experiment using spectrally matched noise stimuli. (A)
Example textures and corresponding noise stimuli used in the control experi-
ment. The phase of each texture in the Fourier space was randomized to create
a noise stimulus. (B) Normalized firing rates for textures and noises in V2 and
V4. We showed 5 textures and noise images that were evenly chosen from a
cell’s preferred and nonpreferred textures and averaged the elicited responses.
The firing rates were normalized by the response to the cell’s most preferred
texture. Error bars are SEM across cells. *P < 0.01, **P < 0.001, Wilcoxon rank
sum test. (C) We computed a modulation index for each cell, which is the differ-
ence in normalized firing rates between the textures and noise images divided
by their sum. Error bars are SEM across cells. **P < 0.01, Mann-Whitney U test.

Response dynamics for textures and noise images during the
control experiment were consistent with those trends. The differ-
ences in responses to the textures and the noise images were
more pronounced in V4 than in V2 (Fig. 7D). Figure 7E left depicts
the differences in normalized firing rates between the textures
and noise images (Modulation index), which indicates the
strength of the modulation by higher-order statistics. The overall
modulation in V4 was greater than that in V2 (around 130-
300 ms), while the onset of the modulation appears earlier in V2
in this plot. The larger modulation in V4 was also evident when
we normalized the modulation to the sum of responses to tex-
tures and noise images (i.e. (normalized responses to texture —
that to noise)/(normalized responses to texture + that to noise);
Fig. 7E right). The asynchrony of the onsets between V2 and V4,
however, disappeared with this normalized modulation index
because V2 exhibited a sharp phasic onset activity (Fig. 7D),
which increased the denominator of the normalized modulation
index and thus reduced the earlier V2 modulation. Together,
these analyses of the latency of higher-order components did
not enable us to conclude which area took precedence.

Response Characteristics

The aforementioned fitting analyses described the stimulus
selectivity but disregarded other response characteristics such
as average firing rates and the sparseness of responses. Here
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Figure 7. Analysis of the time course of responses and selectivity for image fea-
tures. (A) PSTH averaged across the responses of all significantly fit neurons in
V2 (blue; n = 56) and V4 (red; n = 83). Before averaging across cells, the firing
rates were normalized such that the maximum for each cell was unity. The line
thickness indicates the SEM across cells. A pink horizontal bar beneath the
lines indicates the stimulus presentation period. (B) Time courses of the fitting
performances using the 29 image statistics. The panel shows the average of all
significantly fit cells. The fitting analysis was performed for firing rates within
every 10-ms nonoverlapping time windows. The vertical axis corresponds to
Pearson’s correlation coefficients between actual neural responses and
responses predicted from the fitting analysis. (C) Mean of weights across cells
for spectral statistics (left) and higher-order image statistics (right). The black
lines above the traces indicate the periods where the difference between V2
and V4 was significant (P < 0.05; Mann-Whitney U test). (D) PSTHs averaged
across textural images (Original) and corresponding spectrally matched noise
images (Noise), which have the same spectral parameters but lack higher-order
statistics: left, V2; right, V4. The responses were average across the neurons
tested using the noise images (V2, n = 38; V4, n = 90). Responses were normal-
ized to the peak amplitude in each cell. The line thickness indicates SEM across
cells. (E) Modulation index, defined as the differences in responses between tex-
tural stimuli and corresponding noise stimuli (left panel) for V2 (blue) and V4
(red). The right panel depicts the difference in responses normalized by their
sum.

we compare those response characteristics between V2 and V4.
In particular, sparseness is thought to be indicative of under-
lying neural mechanisms (Olshausen and Field 1996; Karklin
and Lewicki 2009; Carlson et al. 2011), and there has been a
debate over whether response sparseness undergoes a system-
atic change along the cortical hierarchy (Baddeley et al. 1997,
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Willmore et al. 2011; Rust and DiCarlo 2012). Rust and DiCarlo
(2012) showed that the sparseness of responses to natural
images is stable across the ventral pathway, which they
explained as reflecting balanced increases in selectivity for
images and tolerance to image transformations such as object
translation or rotation. Nonetheless, response sparseness for
textures may provide different results if the mechanisms under-
lying the tuning properties differ between objects and textures.

Indeed, we found that V4 neurons responded more sparsely
to our textural stimuli than V2 neurons (Fig. 8A). In this test, we
used a conventional measure of sparseness (sparseness index;
see eq. 2 in Materials and Methods) whose values range from 0
(nonsparse) to 1 (sparse). Neurons in V4 tended to have signifi-
cantly higher-sparseness indices than those in V2 (P = 0.0061,
Mann-Whitney U test; mean V2 = 0.42, V4 = 0.52), although it
did not reach a significant level in one monkey (monkey SI,
P = 0.18; monkey EV, P = 0.05). Because the sparseness index is
sensitive to a multitude of confounding factors (Lehky et al.
2005; Rust and DiCarlo 2012), we performed several control ana-
lyses. We first examined a different index of the sharpness of
neuronal selectivity, entropy (eq. 3 in Materials and Methods),
which is unaffected by the mean and SD of the firing rates
(Lehky et al. 2005). Entropy also significantly differed between
V2 and V4 (Fig. 8B; P < 0.001, Mann-Whitney U test; monkey SI,
P = 0.0033; monkey EV, P = 0.071). Because the sparseness index
shows a systematic bias when spikes are generated from
Poisson process (Rust and DiCarlo 2012), we adopted the cor-
rected sparseness index proposed in Rust and DiCarlo (2012),
which confirmed that the significant difference persisted
(P = 0.013). In our experiment, we sampled neural responses
using adaptive exploration, which could be a potential source
of artifact in the estimation of sparseness. We therefore calcu-
lated sparseness using only data from the first generation of
sampling, which was unaffected by the adaptive exploration,
and found similar results (V2 = 0.41; V4 = 0.53; P = 0.0022).
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We also observed that the firing rates averaged across all
cells and stimuli were higher in V2 than in V4, as was the SD of
firing rates across stimuli (Fig. 8D). This could not be solely
explained by the difference in sparseness since the maximum
firing rates for the most preferred texture were also largely dif-
ferent between the areas (V2: 80.0 spike/s, V4: 59.4 spike/s;
P < 0.001, Mann-Whitney U test). By contrast, the spontaneous
firing rates were statistically indistinguishable between the 2
areas (P = 0.095). Intriguingly, the discrimination index, an
index of neurons’ ability to discriminate stimuli (eq. 1 in
Materials and Methods), was comparable between the 2 areas
(V2 = 0.72; V4 = 0.74; P = 0.50, Mann-Whitney U test; Fig. 8C),
despite the differences in average firing rates. The discrimin-
ation index incorporates maximum and minimum firing rates
as well as response variability (eq. 1 in Materials and Methods).
If we excluded the variability from the discrimination index
(i.e. the index defined as the difference in the maximum and
minimum firing rates divided by their sum), V4 outperformed
V2 (V2 =0.82; V4 = 0.92; P < 0.001). These results, showing spar-
ser and lower responses in V4, indicate that, overall, V4 tends
to respond to textural stimuli more weakly than V2, whereas
the discrimination index was indistinguishable or even slightly
better in V4.

Discussion

Previous studies reported that surface properties and textures
are processed in the ventral visual pathway (Hanazawa and
Komatsu 2001; Liu et al. 2004; Koteles et al. 2008; Nishio et al.
2012; Okazawa et al. 2012; Goda et al. 2014; Nishio et al. 2014;
Orban et al. 2014), but how responses in V1 are integrated into
naturalistic texture representations remains an enigma. Given
the recent studies suggesting that both V2 and V4 respond to
higher-order image statistics (i.e. combinations of V1-like filter
responses) (Freeman et al. 2013; Okazawa et al. 2015; Ziemba
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Figure 8. Comparison of firing properties in V2 and V4. The analyses were performed using all the cells recorded (78 cells in V2 and 109 cells in V4). (A) Sparseness
index, which represents the sharpness of stimulus selectivity (see “Analysis of neuronal firing rates” in Materials and Methods for its definition). The 2 bar bright-
nesses indicate the different monkeys: white, monkey SI; gray, monkey EV. The upper and lower panels correspond to V2 and V4, respectively. Arrowheads indicate
the average values for each monkey. (B) Distribution of entropy and sparseness indices corrected for the Poisson properties of the firing rates. Each dot represents one
neuron, and their horizontal positions are jittered for visualization purposes. Horizontal gray bars indicate the mean values. *P < 0.05, **P < 0.001, Mann-Whitney U
test. (C) Distribution of discrimination indices, which represent the neurons’ abilities to discriminate textures (see eq. 1 in “Analysis of neuronal firing rates” in
Materials and Methods). n.s.: nonsignificant, Mann-Whitney U test. (D) Mean, SD, and spontaneous firing rates. **P < 0.001, Mann-Whitney U test.
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et al. 2016), the present study aimed to clarify differences in
texture selectivity between V2 and V4. Our fitting analysis sug-
gested that, although both areas similarly had weights for V1-
level spectral and higher-order features, V4 showed slightly
stronger weights for higher-order statistics than V2. We con-
firmed this finding in a control experiment in which we mea-
sured responses to noise images that lacked higher-order
structures. These results suggest that representation of higher-
order statistics, which is likely a cornerstone of visual texture
processing (Freeman and Simoncelli 2011), gradually develops
along the ventral pathway.

Despite the widely accepted notion that V2 and V4 serve as
important building blocks of visual processing in the ventral
pathway, surprisingly few attempts have been made to directly
compare the 2 regions using parametrically defined stimuli.
Hegdé and Van Essen (2007) compared the 2 regions using non-
Cartesian (circular or hyperbolic) gratings, but found little evi-
dence for the development of stimulus selectivity between V2
and V4. By showing the parametric tunings for higher-order
image statistics, the present study, for the first time, revealed
systematic differences in selectivity for complex visual patterns
between macaque V2 and V4.

It should be noted, however, that we do not specifically
argue that V2 and V4 encode the exact model we developed in
this report (i.e. parameters reduced from the texture synthesis
model). Although a cross-validation analysis showed that no
other texture model outperforms our model in terms of fitting
accuracy (Supplementary Figure 2), this does not mean that the
our model per se is encoded in V2 and V4. Instead, we expect
that slightly different forms of our model or other models with
similar underlying computations will achieve similar levels of
fitting performance. Nonetheless, we believe that our fitting
analyses were sufficient to reveal the major similarities and dif-
ferences in texture selectivity between V2 and V4; that texture
selectivity in both areas can be better explained using higher-
order features than using only spectral features; and that this
tendency is observed slightly more clearly in V4 than V2.

Excluding Possible Confounding Factors

A multitude of factors can induce apparent differences in
stimulus selectivity between 2 brain regions. Therefore, special
caution is required when comparing them. These confounding
factors include the positions and sizes of receptive fields, the
effect of the receptive field surround, the recording histories,
and the experimental strategies used, such as the adaptive
sampling method we used. Here we consider the potential
effects of these factors.

We recorded neurons so that the positions of the receptive
field center in V2 and V4 closely matched, but the sizes of the
receptive fields differed between the 2 areas. We therefore con-
ducted a post hoc analysis and showed that the stimulus size
does not account for the fitting results (see the “Tuning for
image statistics” section in the Results). It has been recently
reported that larger sizes of texture stimuli yielded stronger
sensitivity to higher-order features in V2 (Ziemba et al. 2013),
but our stimuli should be large enough (6.4°) to drive higher-
order responses of the V2 neurons because their receptive field
sizes (2.4°) were on average much smaller than the stimulus
size. The mean size of V4 receptive field (6.0°) was similar to
the stimulus size. Therefore, unless we assume that stimulat-
ing the receptive field surround weakens the selectivity for
higher-order image statistics (as opposed to Ziemba et al. 2013),

the difference in higher-order selectivity between V2 and V4
cannot be explained by the size dependence of the selectivity.

Because we collected all V2 neurons after the V4 recordings,
long-term changes in neuronal properties are a potential con-
founding factor. To assess this possibility, we ran a post hoc
analysis to examine a correlation between the tunings of cells
and the recording histories. In neither monkeys nor within any
experiment on V2 and V4, did we see consistent changes in the
strength of selectivity for higher-order features during the
course of the experiments. It should also be noted that record-
ings from V2 and V4 were made in different hemispheres in
both monkeys. Therefore, invasions of the downstream region
(V4) are unlikely to account for the weaker selectivity for
higher-order features in V2.

Finally, we should consider the effect of our specific strategy
of collecting neuronal responses, that is the adaptive sampling
method. Although adaptive sampling is advantageous for effi-
cient sampling of neuronal tunings, the biased sampling could
affect the fitting results. However, we do not think that this is
the case for the following reasons. First, our adaptive sampling
procedure always included randomly selected stimuli in each
generation (see Materials and Methods), which would mitigate
the effect of sampling bias. Second, using a subset of V4 cells,
we previously confirmed that the adaptive sampling converged
to similar preferred textures when started from 2 different ini-
tial sets of textures (Okazawa et al. 2015), which indicates that
the procedure yields robust results. Third, our main result, that
V4 had greater sensitivity to higher-order features, was also
supported by an independent control experiment using noise
images.

Roles of V2 and V4 in the Processing of Texture and
Other Visual Features

Our results from V2 are largely consistent with earlier studies.
Freeman et al. (2013) showed that higher-order features acti-
vate V2 neurons more strongly than spectrally matched noise
images, which lack those features. The present study found a
similar level of modulation by higher-order features in V2, but
there was a small difference in the time courses of the modula-
tion; V2 neurons in our study displayed strong modulation
almost from the onset of visual responses, whereas neurons in
their study showed a gradual increase in modulation during
late parts of visual responses (Freeman et al. 2013, Figure 2c).
Our PSTH in V2 also exhibited a sharp response onset, which is
probably because we used awake animals. Whether the earlier
rise in the modulation for higher-order features can also be
explained by differences between awake and anesthetized
states remains to be determined.

Neurons in both V2 and V4 respond to moderately complex
shapes such as curved contours or non-Cartesian gratings
(Gallant et al. 1993; Hegdé and Van Essen 2000; Ito and
Komatsu 2004; Anzai et al. 2007; Nandy et al. 2013; Yu et al.
2015). As mentioned earlier, Hegdé and Van Essen (2007) found
little evidence for the development of selectivity for non-
Cartesian gratings from V2 to V4, which may be because the
selectivity is attributable to spectral parameters (David et al.
2006). On the other hand, V4 neurons show selectivity for cur-
vatures at specific locations within shapes (Pasupathy and
Connor 2001), which cannot be accounted for by the selectivity
for spectral parameters (Oleskiw et al. 2014). Because the
higher-order texture representation also does not account for
object-centered contour representations as the texture
representation lacks spatial information, we favor the idea that
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representations of texture and contours develop separately
along the ventral pathway, although this does not necessarily
mean that different populations of neurons represent texture
and contours. Advances in hierarchical network models may
provide an account for both texture and shape representations
(Khaligh-Razavi and Kriegeskorte 2014; Yamins et al. 2014,
Gatys et al. 2015; Glicli and van Gerven 2015).

Interpretation of Differences in Firing Characteristics

In addition to the texture-tuning properties, we found charac-
teristic differences between V2 and V4 in their firing properties.
V4 had lower average firing rates and responded more sparsely
to textural stimuli. This indicates that textural stimuli, on aver-
age, evoked fewer spikes in V4 than in V2 at the single-cell
level. This result appears to be consistent with a previous func-
tional magnetic resonance imaging finding (Freeman et al.
2013) that V2 exhibited stronger activation in response to tex-
tural stimuli than does V4. This does not, however, readily indi-
cate that V2 plays a more important role in texture processing,
since V2 and V4 had almost identical powers to explain
humans’ discriminability of textures and categorization of
materials (see Supplementary Figure 3). Instead, this may sug-
gest that V4 neurons represent textures more economically
than V2, considering that V4 encodes a similar level of informa-
tion using smaller numbers of spikes.

Previous studies have shown that the sparseness of
responses to natural scenes is unchanged along the ventral
pathway (Willmore et al. 2011; Rust and DiCarlo 2012), which is
explained by a constant balance of selectivity for object fea-
tures and tolerances of object transformations (e.g. spatial
shifting) within neuronal receptive fields (Rust and DiCarlo
2012). Compared with natural scenes consisting of objects, our
textural stimuli are less concerned with the tolerance of
responses due to their repetitive structures. This may explain
the observed difference in sparseness between V2 and V4 in
our study. Weaker V4 responses to textures may also imply
that V4 neurons efficiently allocate their resources for encod-
ing/processing more complex features than the higher-order
statistics considered here, such as conjunctions of multiple tex-
tures and shapes. To fully describe the neural representation in
higher-visual cortices, it will be necessary to characterize neu-
rons’ tunings by parametrically manipulating visual stimuli
containing such complex features.

Supplementary Material

Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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